Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biochemistry ; 45(7): 2302-10, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16475819

RESUMO

The Na(+)/dicarboxylate cotransporters (NaDC1) from mouse (m) and rabbit (rb) differ in their ability to handle glutarate. Substrate-dependent inward currents, measured using two-electrode voltage clamp, were similar for glutarate and succinate in Xenopus oocytes expressing mNaDC1. In contrast, currents evoked by glutarate in rbNaDC1 were only about 5% of the succinate-dependent currents. To identify domains involved in glutarate transport, we constructed a series of chimeric transporters between mouse and rabbit NaDC1. Although residues found in multiple transmembrane helices (TM) participate in glutarate transport, the most important contribution is made by TM 3 and 4 and the associated loops. The R(M3-4) chimera, consisting of rbNaDC1 with substitution of TM 3-4 from mNaDC1, had a decreased K(0.5)(glutarate) of 4 mM compared with 15 mM in wild-type rbNaDC1 without any effect on K(0.5)(succinate). The chimeras were also characterized using dual-label competitive uptakes with (14)C-glutarate and (3)H-succinate to calculate the transport specificity ratio (TSR), a measure of relative catalytic efficiency with the two substrates. The TSR analysis provides evidence for functional coupling in the transition state between TM 3 and 4. We conclude that TM 3 and 4 contain amino acid residues that are important determinants of substrate specificity and catalytic efficiency in NaDC1.


Assuntos
Transportadores de Ácidos Dicarboxílicos/química , Transportadores de Ácidos Dicarboxílicos/fisiologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/química , Transportadores de Ânions Orgânicos Dependentes de Sódio/fisiologia , Simportadores/química , Simportadores/fisiologia , Animais , Transportadores de Ácidos Dicarboxílicos/genética , Glutaratos/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Proteínas Mutantes Quiméricas/metabolismo , Oócitos/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Técnicas de Patch-Clamp/métodos , Estrutura Secundária de Proteína , Coelhos , Simportadores/genética , Xenopus laevis
3.
J Biol Chem ; 280(28): 26032-8, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15890647

RESUMO

Evidence is accumulating that the topological organization and hence function of some membrane proteins are not solely determined by the amino acid sequence of the protein but are also influenced by the lipid composition of the membrane. The gamma-aminobutyric acid (GABA) permease (GabP) of Escherichia coli has been found in this study to be affected both topologically and kinetically by membrane lipids. Using single cysteine accessibility methods with viable E. coli strains of natural lipid composition and those lacking phosphatidylethanolamine (PE), we have shown that the N-terminal hairpin of GabP is inverted relative to the membrane in PE-lacking cells, with a hinge point in transmembrane domain III. The rate of GABA transport is reduced by more than 99% in PE-lacking cells. The Michaelis constant for GABA transport is not greatly affected nor is the dependence of transport on energy. However, "transport specificity ratio" analysis demonstrated a clear transition state stability difference for GABA and nipecotic acid between the protein in PE-containing and PE-lacking cells. The patterns of observed effects are similar to those seen with the phenylalanine transporter of E. coli (Zhang, W., Bogdanov, M. Pi, J. Pittard, A. J., and Dowhan, W. (2003) J. Biol. Chem. 278, 50128-50135), also an amino acid/polyamine/organocation family member but quite distinct from those observed with lactose permease (Bogdanov, M., Heacock, P. N., and Dowhan, W. (2002) EMBO J. 21, 2107-2116), a major facilitator superfamily member. Therefore, by extending the studies of similarities and differences in lipid responses among and between family groups, we may identify elements within the proteins that facilitate lipid responsiveness.


Assuntos
Membrana Celular/metabolismo , Escherichia coli/metabolismo , Transportadores de Ânions Orgânicos/fisiologia , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/metabolismo , Ligação Competitiva , Transporte Biológico , Western Blotting , Cristalografia por Raios X , Cisteína/química , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli , Proteínas da Membrana Plasmática de Transporte de GABA , Imunoprecipitação , Cinética , Metabolismo dos Lipídeos , Lipídeos/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Transportadores de Ânions Orgânicos/metabolismo , Fenilalanina/química , Fosfatidiletanolaminas/química , Fosfolipídeos/química , Plasmídeos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fatores de Tempo
4.
BMC Biochem ; 5: 16, 2004 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-15548327

RESUMO

BACKGROUND: In establishing structure-function relationships for membrane transport proteins, the interpretation of phenotypic changes can be problematic, owing to uncertainties in protein expression levels, sub-cellular localization, and protein-folding fidelity. A dual-label competitive transport assay called "Transport Specificity Ratio" (TSR) analysis has been developed that is simple to perform, and circumvents the "expression problem," providing a reliable TSR phenotype (a constant) for comparison to other transporters. RESULTS: Using the Escherichia coli GABA (4-aminobutyrate) permease (GabP) as a model carrier, it is demonstrated that the TSR phenotype is largely independent of assay conditions, exhibiting: (i) indifference to the particular substrate concentrations used, (ii) indifference to extreme changes (40-fold) in transporter expression level, and within broad limits (iii) indifference to assay duration. The theoretical underpinnings of TSR analysis predict all of the above observations, supporting that TSR has (i) applicability in the analysis of membrane transport, and (ii) particular utility in the face of incomplete information on protein expression levels and initial reaction rate intervals (e.g., in high-throughput screening situations). The TSR was used to identify gab permease (GabP) variants that exhibit relative changes in catalytic specificity (kcat/Km) for [14C]GABA (4-aminobutyrate) versus [3H]NA (nipecotic acid). CONCLUSIONS: The TSR phenotype is an easily measured constant that reflects innate molecular properties of the transition state, and provides a reliable index of the difference in catalytic specificity that a carrier exhibits toward a particular pair of substrates. A change in the TSR phenotype, called a Delta(TSR), represents a specificity shift attributable to underlying changes in the intrinsic substrate binding energy (DeltaGb) that translocation catalysts rely upon to decrease activation energy (Delta G(T)(++). TSR analysis is therefore a structure-function tool that enables parsimonious scanning for positions in the protein fold that couple to the transition state, creating stability and thereby serving as functional determinants of catalytic power (efficiency, or specificity).


Assuntos
Modelos Moleculares , Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/fisiologia , Dobramento de Proteína , Relação Quantitativa Estrutura-Atividade , Ligação Competitiva/fisiologia , Catálise , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Variação Genética/fisiologia , Ácidos Nipecóticos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Fenótipo , Especificidade por Substrato/fisiologia , Ácido gama-Aminobutírico/metabolismo
5.
Biochem J ; 376(Pt 3): 645-53, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12956623

RESUMO

The Escherichia coli GABA (gamma-aminobutyric acid) permease GabP is a prototypical APC (amine/polyamine/choline) super-family transporter that has a CAR (consensus amphipathic region) containing multiple specificity determinants, ostensibly organized on two helical surfaces, one hydrophobic [SHS (sensitive hydrophobic surface)] and the other hydrophilic [SPS (sensitive polar surface)]. To gauge the functional effects of placing alanine insertions at close intervals across the entire GabP CAR, 64 insertion variants were constructed. Insertions, particularly those in the SHS and the SPS, were highly detrimental to steady-state [(3)H]GABA accumulation. TSR (transport specificity ratio) analysis, employing [(3)H]nipecotic acid and [(14)C]GABA, showed that certain alanine insertions were associated with a specificity shift (i.e. a change in k (cat)/ K (m)). An insertion (INS Ala-269) located N-terminal to the SHS increased specificity for [(3)H]nipecotic acid relative to [(14)C]GABA, whereas an insertion (INS Ala-321) located C-terminal to the SPS had the opposite effect. Overall, the results are consistent with a working hypothesis that the GabP CAR contains extensive functional surfaces that may be manipulated by insertion mutagenesis to alter the specificity ( k (cat)/ K (m)) phenotype. The thermodynamic basis of TSR analysis provides generality, suggesting that amino acid insertions could affect specificity in many other transporters, particularly those such as the E. coli phenylalanine permease PheP [Pi, Chow and Pittard (2002) J. Bacteriol. 184, 5842-5847] that have a functionally significant CAR-like domain.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/metabolismo , Alanina/genética , Sequência de Aminoácidos , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/genética , Sequência Consenso , Proteínas de Escherichia coli/genética , Proteínas da Membrana Plasmática de Transporte de GABA , Genes Reporter , Interações Hidrofóbicas e Hidrofílicas , Immunoblotting , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Insercional , Transportadores de Ânions Orgânicos/genética , Estrutura Secundária de Proteína , Especificidade por Substrato , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Biochem J ; 376(Pt 3): 633-44, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12956624

RESUMO

The Escherichia coli GABA (gamma-aminobutyric acid) permease, GabP, and other members of the APC (amine/polyamine/choline) transporter superfamily share a CAR (consensus amphipathic region) that probably contributes to solute translocation. If true, then the CAR should contain structural features that act as determinants of substrate specificity ( k (cat)/ K (m)). In order to address this question, we have developed a novel, expression-independent TSR (transport specificity ratio) analysis, and applied it to a series of 69 cysteine-scanning (single-cysteine) variants. The results indicate that GabP has multiple specificity determinants (i.e. residues at which an amino acid substitution substantially perturbs the TSR). Specificity determinants were found: (i) on a hydrophobic surface of the CAR (from Leu-267 to Ala-285), (ii) on a hydrophilic surface of the CAR (from Ser-299 to Arg-318), and (iii) in a cytoplasmic loop (His-233) between transmembrane segments 6 and 7. Overall, these observations show that (i) structural features within the CAR have a role in substrate discrimination (as might be anticipated for a transport conduit) and, interestingly, (ii) the substrate discrimination task is shared among specificity determinants that appear too widely dispersed across the GabP molecule to be in simultaneous contact with the substrates. We conclude that GabP exhibits behaviour consistent with a broadly applicable specificity delocalization principle, which is demonstrated to follow naturally from the classical notion that translocation occurs synchronously with conformational transitions that change the chemical potential of the bound ligand [Tanford (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2882-2884].


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/metabolismo , Sequência de Aminoácidos , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/genética , Sequência Consenso , Cisteína/genética , Proteínas de Escherichia coli/genética , Proteínas da Membrana Plasmática de Transporte de GABA , Interações Hidrofóbicas e Hidrofílicas , Isopropiltiogalactosídeo/farmacologia , Cinética , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ácidos Nipecóticos/metabolismo , Transportadores de Ânions Orgânicos/genética , Estrutura Secundária de Proteína , Especificidade por Substrato , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...