Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 77(3): 852-869, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36626801

RESUMO

Hybrid zones can be studied by modeling clines of trait variation (e.g., morphology, genetics) over a linear transect. Yet, hybrid zones can also be spatially complex, can shift over time, and can even lead to the formation of hybrid lineages with the right combination of dispersal and vicariance. We reassessed Sibley's (1950) gradient between Collared Towhee (Pipilo ocai) and Spotted Towhee (Pipilo maculatus) in Central Mexico to test whether it conformed to a typical tension-zone cline model. By comparing historical and modern data, we found that cline centers for genetic and phenotypic traits have not shifted over the course of 70 years. This equilibrium suggests that secondary contact between these species, which originally diverged over 2 million years ago, likely dates to the Pleistocene. Given the amount of mtDNA divergence, parental ends of the cline have very low autosomal nuclear differentiation (FST = 0.12). Dramatic and coincident cline shifts in mtDNA and throat color suggest the possibility of sexual selection as a factor in differential introgression, while a contrasting cline shift in green back color hints at a role for natural selection. Supporting the idea of a continuum between clinal variation and hybrid lineage formation, the towhee gradient can be analyzed as one population under isolation-by-distance, as a two-population cline, and as three lineages experiencing divergence with gene flow. In the middle of the gradient, a hybrid lineage has become partly isolated, likely due to forested habitat shrinking and fragmenting as it moved upslope after the last glacial maximum and a stark environmental transition. This towhee system offers a window into the potential outcomes of hybridization across a dynamic landscape including the creation of novel genomic and phenotypic combinations and incipient hybrid lineages.


Assuntos
Genoma , Passeriformes , Animais , Passeriformes/genética , Seleção Genética , Hibridização Genética , Genômica , DNA Mitocondrial/genética
2.
BMC Genomics ; 22(1): 742, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649498

RESUMO

BACKGROUND: Damage to the adult central nervous system often leads to long-term disruptions in function due to the limited capacity for neurological recovery. The central nervous system of the Mediterranean field cricket, Gryllus bimaculatus, shows an unusual capacity for compensatory plasticity, most obviously in the auditory system and the cercal escape system. In both systems, unilateral sensory disruption leads the central circuitry to compensate by forming and/or strengthening connections with the contralateral sensory organ. While this compensatory plasticity in the auditory system relies on robust dendritic sprouting and novel synapse formation, the compensatory plasticity in the cercal escape circuitry shows little obvious dendritic sprouting and instead may rely on shifts in excitatory and inhibitory synaptic strength. RESULTS: In order to better understand what types of molecular pathways might underlie this compensatory shift in the cercal system, we used a multiple k-mer approach to assemble a terminal ganglion transcriptome that included ganglia collected one, three, and 7 days after unilateral cercal ablation in adult, male animals. We performed differential expression analysis using EdgeR and DESeq2 and examined Gene Ontologies to identify candidates potentially involved in this plasticity. Enriched GO terms included those related to the ubiquitin-proteosome protein degradation system, chromatin-mediated transcriptional pathways, and the GTPase-related signaling system. CONCLUSION: Further exploration of these GO terms will provide a clearer picture of the processes involved in compensatory recovery of the cercal escape system in the cricket and can be compared and contrasted with the distinct pathways that have been identified upon deafferentation of the auditory system in this same animal.


Assuntos
Gryllidae , Animais , Sistema Nervoso Central , Gryllidae/genética , Interneurônios , Masculino
3.
PLoS One ; 16(7): e0249587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34297723

RESUMO

Cryptic and hybridizing species may lack diagnostic taxonomic characters leaving researchers with semi-diagnostic ones. Identification based on such characters is probabilistic, the probability of correct identification depending on the species composition in a mixed population. Here we test the possibilities of applying a semi-diagnostic conchological character for distinguishing two cryptic species of blue mussels, Mytilus edulis and M. trossulus. These ecologically, stratigraphically and economically important molluscs co-occur and hybridize in many areas of the North Atlantic and the neighboring Arctic. Any cues for distinguishing them in sympatry without genotyping would save much research effort. Recently these species have been shown to statistically differ in the White Sea, where a simple character of the shell was used to distinguish two mussel morphotypes. In this paper, we analyzed the associations between morphotypes and species-specific genotypes based on an abundant material from the waters of the Kola Peninsula (White Sea, Barents Sea) and a more limited material from Norway, the Baltic Sea, Scotland and the Gulf of Maine. The performance of the "morphotype test" for species identification was formally evaluated using approaches from evidence-based medicine. Interspecific differences in the morphotype frequencies were ubiquitous and unidirectional, but their scale varied geographically (from 75% in the White Sea to 15% in the Baltic Sea). In addition, salinity-related variation of this character within M. edulis was revealed in the Arctic Barents Sea. For every studied region, we established relationships between the proportions of the morphotypes in the populations as well as between the proportions of the morphotypes in samples and the probabilities of mussels of different morphotypes being M. trossulus and M. edulis. We provide recommendations for the application of the morphotype test to mussels from unstudied contact zones and note that they may apply equally well to other taxa identified by semi-diagnostic traits.


Assuntos
Mytilus edulis/genética , Animais , Hibridização Genética , Fenótipo , Especificidade da Espécie
4.
Ecol Evol ; 2(11): 2737-48, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23170209

RESUMO

Hybrid zones are unique biological interfaces that reveal both population level and species level evolutionary processes. A genome-scale approach to assess gene flow across hybrid zones is vital, and now possible. In Mexican towhees (genus Pipilo), several morphological hybrid gradients exist. We completed a genome survey across one such gradient (9 populations, 140 birds) using mitochondrial DNA, 28 isozyme, and 377 AFLP markers. To assess variation in introgression among loci, cline parameters (i.e., width, center) for the 61 clinally varying loci were estimated and compiled into genomic distributions for tests against three empirical models spanning the range of observed cline shape. No single model accounts for observed variation in cline shape among loci. Numerous backcross individuals near the gradient center confirm a hybrid origin for these populations, contrary to a previous hypothesis based on social mimicry and character displacement. In addition, the observed variation does not bin into well-defined categories of locus types (e.g., neutral vs. highly selected). Our multi-locus analysis reveals cross-genomic variation in selective constraints on gene flow and locus-specific flexibility in the permeability of the interspecies membrane.

5.
BMC Evol Biol ; 9: 245, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19811651

RESUMO

BACKGROUND: Many molecular phylogenetic analyses rely on DNA sequence data obtained from single or multiple loci, particularly mitochondrial DNA loci. However, phylogenies for taxa that have undergone recent, rapid radiation events often remain unresolved. Alternative methodologies for discerning evolutionary relationships under these conditions are desirable. The dolphin subfamily Delphininae is a group that has likely resulted from a recent and rapid radiation. Despite several efforts, the evolutionary relationships among the species in the subfamily remain unclear. RESULTS: Here, we compare a phylogeny estimated using mitochondrial DNA (mtDNA) control region sequences to a multi-locus phylogeny inferred from 418 polymorphic genomic markers obtained from amplified fragment length polymorphism (AFLP) analysis. The two sets of phylogenies are largely incongruent, primarily because the mtDNA tree provides very poor resolving power; very few species' nodes in the tree are supported by bootstrap resampling. The AFLP phylogeny is considerably better resolved and more congruent with relationships inferred from morphological data. Both phylogenies support paraphyly for the genera Stenella and Tursiops. The AFLP data indicate a close relationship between the two spotted dolphin species and recent ancestry between Stenella clymene and S. longirostris. The placement of the Lagenodelphis hosei lineage is ambiguous: phenetic analysis of the AFLP data is consistent with morphological expectations but the phylogenetic analysis is not. CONCLUSION: For closely related, recently diverged taxa, a multi-locus genome-wide survey is likely the most comprehensive approach currently available for phylogenetic inference.


Assuntos
DNA Mitocondrial/genética , Golfinhos/genética , Evolução Molecular , Genômica/métodos , Filogenia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Núcleo Celular/genética , Golfinhos/classificação , Marcadores Genéticos , Hibridização Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...