Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 941: 173554, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823724

RESUMO

In the current study, the genotypic characteristics such as antimicrobial resistance and virulence genes, and plasmid replicons and phenotypic characteristics such as biofilm formation and antimicrobial resistance of 87 extended-spectrum beta-lactamase (ESBL)-producing E. coli (ESBL-Ec) isolated from 7 water bodies in northern Greece were investigated. Our data show a high prevalence (60.0 %) of ESBL-Ec in surface waters that exhibit high genetic diversity, suggesting multiple sources of their transmission into the aquatic environment. When evaluating the antimicrobial resistance of isolates, wide variation in their resistance profiles has been detected, with all isolates being multi-drug resistant (MDR). Regarding biofilm formation capacity and phylogenetic groups, the majority (54.0 %, 47/87) of ESBL-Ec were classified as no biofilm producers mainly assigned to phylogroup A (35.6 %; 31/87), followed by B2 (26.5 %; 23/87). PCR screening showed that a high proportion of the isolates tested positive for the blaCTX-M-1 group genes (69 %, 60/87), followed by blaTEM (55.2 %, 48/87), blaOXA (25.3 %, 22/87) and blaCTX-M-9 (17.2 %, 15/87). A subset of 28 ESBL-Ec strains was further investigated by applying whole genome sequencing (WGS), and among them, certain clinically significant sequence types were identified, such as ST131 and ST10. The corresponding in silico analysis predicted all these isolates as human pathogens, while a significant proportion of WGS-ESBL-Ec were assigned to extraintestinal pathogenic E. coli (ExPEC; 32.1 %), and urinary pathogenic E. coli (UPEC; 28.6 %) pathotypes. Comparative phylogenetic analysis, showed that the genomes of the ST131-O25:H4-H30 isolates are genetically linked to the human clinical strains. Here, we report for the first time the detection of a plasmid-mediated mobile colistin resistance gene in ESBL-Ec in Greece isolated from an environmental source. Overall, this study underlines the role of surface waters as a reservoir for antibiotic resistance genes and for presumptive pathogenic ESBL-Ec.


Assuntos
Escherichia coli , Rios , beta-Lactamases , Escherichia coli/genética , Grécia , beta-Lactamases/genética , Rios/microbiologia , Filogenia
2.
J Environ Manage ; 318: 115562, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35764000

RESUMO

In this study, lead removal from aqueous solutions using biochar derived from olive mill solid and liquid wastes has been investigated by applying batch experiments and geochemical modelling. The batch adsorption experiments included the assessment of several key parameters such as the contact time (kinetic), initial concentration (isotherm), pH, adsorbent dose, and the presence of competitive cations, whilst the geochemical modelling focused on the involved adsorption mechanisms using the PHREEQC code. The kinetic studies showed that lead adsorption is a relatively fast process, where intraparticle diffusion is the rate-limiting step. Biochar dose, solution pH and the presence of competitive ions significantly affected the Pb adsorption effectiveness by the biochar. Especially the higher Pb removal percentages were observed in mono-elemental solutions with high biochar dose at mildly acidic solution pH values. The maximum Pb adsorption capacity of biochar was estimated as 40.8 mg g-1 which is higher than various biochars derived from sludge, lignocellulosic and animal biomasses. On the other hand, the geochemical modelling employing the PHREEQC code showed that ion exchange and Pb precipitation are the main reactions controlling its removal from aqueous solutions, whilst surface complexation is insignificant, mainly due to the low surface functional groups on the used biochar.


Assuntos
Olea , Poluentes Químicos da Água , Adsorção , Animais , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Soluções , Água
3.
Sci Total Environ ; 733: 139314, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446075

RESUMO

Hydrothermal carbonization (HTC) is considered as a promising technique for wastes conversion into carbon rich materials for various energetic, environmental and agricultural applications. In this work, the HTC of olive mill wastewater (OMWW) was investigated at different temperatures (180-220 °C) and both, the solid (i.e., hydrochars) and the final process liquid derived from the thermal conversion process were deeply analyzed. Results showed that the solid yield was affected by the temperature, i.e., decrease from 57% to 25% for temperatures of 180 °C and 220 °C, respectively. Furthermore, the hydrochars presented an increasing fixed carbon percentage with the increase of the carbonization temperature, suggesting that decarboxylation is the main reaction driving the HTC process. The decrease in the O/C ratio promoted an increase of the high heating value (HHV) by 32% for hydrochar prepared at 220 °C. The process liquids were sampled and their organic contents were analyzed using GC-MS technique. Acids, alcohols, phenols and sugar derivatives were detected and their concentrations varied with carbonization temperatures. The assessment of the physico-chemical properties of the generated HTC by-products suggested the possible application of the hydrochars for energetic insights while the liquid fraction could be practical for in agricultural field.


Assuntos
Poluentes Ambientais , Olea , Carbono , Fertilizantes , Temperatura , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...