Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892320

RESUMO

Declining estrogen (E2) leads to physical inactivity and adipose tissue (AT) dysfunction. Mechanisms are not fully understood, but E2's effects on dopamine (DA) activity in the nucleus accumbens (NAc) brain region may mediate changes in mood and voluntary physical activity (PA). Our prior work revealed that loss of E2 robustly affected NAc DA-related gene expression, and the pattern correlated with sedentary behavior and visceral fat. The current study used a new transgenic mouse model (D1ERKO) to determine whether the abolishment of E2 receptor alpha (ERα) signaling within DA-rich brain regions affects PA and AT metabolism. Adult male and female wild-type (WT) and D1ERKO (KD) mice were assessed for body composition, energy intake (EE), spontaneous PA (SPA), and energy expenditure (EE); underwent glucose tolerance testing; and were assessed for blood biochemistry. Perigonadal white AT (PGAT), brown AT (BAT), and NAc brain regions were assessed for genes and proteins associated with DA, E2 signaling, and metabolism; AT sections were also assessed for uncoupling protein (UCP1). KD mice had greater lean mass and EE (genotype effects) and a visible change in BAT phenotype characterized by increased UCP1 staining and lipid depletion, an effect seen only among females. Female KD had higher NAc Oprm1 transcript levels and greater PGAT UCP1. This group tended to have improved glucose tolerance (p = 0.07). NAc suppression of Esr1 does not appear to affect PA, yet it may directly affect metabolism. This work may lead to novel targets to improve metabolic dysfunction following E2 loss, possibly by targeting the NAc.


Assuntos
Tecido Adiposo , Metabolismo Energético , Receptor alfa de Estrogênio , Núcleo Accumbens , Receptores de Dopamina D1 , Animais , Núcleo Accumbens/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Camundongos , Feminino , Masculino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Metabolismo Energético/genética , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Camundongos Knockout , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Encéfalo/metabolismo , Camundongos Transgênicos , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL
2.
Biol Reprod ; 110(2): 310-328, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37883444

RESUMO

The fetal brain of the mouse is thought to be dependent upon the placenta as a source of serotonin (5-hydroxytryptamine; 5-HT) and other factors. How factors reach the developing brain remains uncertain but are postulated here to be part of the cargo carried by placental extracellular vesicles (EV). We have analyzed the protein, catecholamine, and small RNA content of EV from mouse trophoblast stem cells (TSC) and TSC differentiated into parietal trophoblast giant cells (pTGC), potential primary purveyors of 5-HT. Current studies examined how exposure of mouse neural progenitor cells (NPC) to EV from either TSC or pTGC affect their transcriptome profiles. The EV from trophoblast cells contained relatively high amounts of 5-HT, as well as dopamine and norepinephrine, but there were no significant differences between EV derived from pTGC and from TSC. Content of miRNA and small nucleolar (sno)RNA, however, did differ according to EV source, and snoRNA were upregulated in EV from pTGC. The primary inferred targets of the microRNA (miRNA) from both pTGC and TSC were mRNA enriched in the fetal brain. NPC readily internalized EV, leading to changes in their transcriptome profiles. Transcripts regulated were mainly ones enriched in neural tissues. The transcripts in EV-treated NPC that demonstrated a likely complementarity with miRNA in EV were mainly up- rather than downregulated, with functions linked to neuronal processes. Our results are consistent with placenta-derived EV providing direct support for fetal brain development and being an integral part of the placenta-brain axis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Gravidez , Feminino , Animais , Camundongos , Serotonina/metabolismo , Placenta/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Encéfalo/metabolismo , Trofoblastos/metabolismo , Células-Tronco/metabolismo
3.
mSystems ; 7(4): e0033622, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862801

RESUMO

Opioid drugs are commonly prescribed analgesic to pregnant women. Direct exposure to such drugs may slow gut motility, alter gut permeability, and affect the gut microbiome. While such drugs affect gut microbiome in infants, no study to date has determined whether developmental exposure to such drugs results in longstanding effects on gut microbiota and correspondingly on host responses. We hypothesized developmental exposure to oxycodone (OXY) leads to enduring effects on gut microbiota and such changes are associated with adult neurobehavioral and metabolic changes. Female mice were treated daily with 5 mg OXY/kg or saline solution (control [CTL]) for 2 weeks prior to breeding and then throughout gestation. Male and female offspring pups were weaned, tested with a battery of behavioral and metabolic tests, and fecal boli were collected adulthood (120 days of age). In females, relative abundance of Butyricimonas spp., Bacteroidetes, Anaeroplasma spp., TM7, Enterococcus spp., and Clostridia were greater in OXY versus CTL individuals. In males, relative abundance of Coriobacteriaceae, Roseburia spp., Sutterella spp., and Clostridia were elevated in OXY exposed individuals. Bacterial changes were also associated with predictive metabolite pathway alterations that also varied according to sex. In males and females, affected gut microbiota correlated with metabolic but not behavioral alterations. The findings suggest that developmental exposure to OXY leads to lasting effects on adult gut microbiota that might affect host metabolism, possibly through specific bacterial metabolites or other bacterial-derived products. Further work is needed to characterize how developmental exposure to OXY affects host responses through the gut microbiome. IMPORTANCE This is the first work to show in a rodent model that in utero exposure to an opioid drug can lead to longstanding effects on the gut microbiota when examined at adulthood. Further, such bacterial changes are associated with metabolic host responses. Given the similarities between rodent and human microbiomes, it raises cause for concern that similar effects may become evident in children born to mothers taking oxycodone and other opioid drugs.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Adulto , Criança , Masculino , Feminino , Animais , Camundongos , Gravidez , Oxicodona/efeitos adversos , Analgésicos Opioides/efeitos adversos , Comportamento Social , Bactérias
4.
Epigenomics ; 13(24): 1909-1919, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34841895

RESUMO

Aim: To determine small RNA expression changes in mouse placenta induced by bisphenol A (BPA) exposure. Methods: Exposing female mice to BPA two weeks prior to conception through gestational day 12.5; whereupon fetal placentas were collected, frozen in liquid nitrogen and stored at -80°C. Small RNAs were isolated and used for small RNA-sequencing. Results: 43 small RNAs were differentially expressed. Target mRNAs were closely aligned to those expressed by thymus and brain, and pathway enrichment analyses indicated that such target mRNAs regulate neurogenesis and associated neurodevelopment processes. Conclusions: BPA induces several small RNAs in mouse placenta that might provide biomarkers for BPA exposure. Further, the placenta might affect fetal brain development through the secretion of miRNAs.


Assuntos
Disruptores Endócrinos , MicroRNAs , Animais , Compostos Benzidrílicos/toxicidade , Feminino , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fenóis/toxicidade , Placenta/metabolismo , Gravidez
5.
Bone Rep ; 15: 101147, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34820485

RESUMO

Bisphenol-A (BPA) and bisphenol-S (BPS) are endocrine disrupting chemicals (EDCs) found primarily in plastics. Estrogen is a primary hormonal regulator of skeletal growth and development; however, the impact of gestational BPA or BPS exposure on skeletal health of offspring remains relatively unknown. Here, adult female mice were randomized into three treatment groups: 200 µg BPA/kg BW (BPA), 200 µg BPS/kg BW (BPS) or control (CON). Animals were then further randomized to exercising (EX) or sedentary (SED) groups. Treatment continued through mating, gestation, and lactation. One male offspring from each dam (n = 6-8/group) was assessed at 16 weeks of age to evaluate effects of EDC exposure on the adult skeleton. Cortical geometry of the mid-diaphysis and trabecular microarchitecture of the distal femur were assessed via micro-CT. Biomechanical strength and mineral apposition rate of the femoral diaphysis were assessed via three-point bending and dynamic histomorphometry, respectively. Two-factor ANOVA or ANCOVA were used to determine the effects of maternal EX and BPA or BPS on trabecular and cortical bone outcomes. Maternal EX led to a significant decrease in body fat percentage and bone stiffness, independent of EDC exposure. Offspring exposed to BPA had significantly lower trabecular bone volume, trabecular number, connectivity density, cortical thickness, and greater trabecular spacing compared to BPS or CON animals. In conclusion, gestational BPA, but not BPS, exposure negatively impacted trabecular microarchitecture and cortical geometry in adult male offspring. If these findings translate to humans, this could have significant public health impacts on expecting women or those seeking to become pregnant.

6.
Bone Rep ; 15: 101136, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34632005

RESUMO

Bisphenol-A (BPA) and bisphenol-S (BPS) are estrogen disrupting chemicals (EDCs) found in the environment and common household items. Estrogen is a primary hormonal regulator of bone growth and development; however, the impact of gestational BPA or BPS exposure on skeletal health of offspring remains relatively unknown. In this longitudinal study, adult female mice were randomized into three groups: 200 µg BPA/kg BW (BPA), 200 µg BPS/kg BW (BPS) or control (CON). Animals in each group were further randomized to exercise treatment (EX) or sedentary (SED) control, resulting in six overall groups. BPA/BPS/CON and EX/SED treatment were initiated prior to mating and continued through mating, gestation, and lactation. One female offspring from each dam (n = 6/group) was assessed at 17 weeks of age to evaluate effects of EDC exposure on the adult skeleton. Cortical geometry of the mid-diaphysis and trabecular microarchitecture of the distal femur were assessed via micro-computed tomography. Biomechanical strength and mineral apposition rate of the femoral diaphysis were assessed via three-point bending and dynamic histomorphometry, respectively. Sclerostin expression was measured using immunohistochemistry. Two-factor ANOVA or ANCOVA were used to determine the effects of maternal exercise and BPA or BPS exposure on trabecular and cortical bone outcomes, respectively. Consistent with prior studies, there were no significant differences in body weight, femoral length, cortical geometry, trabecular microarchitecture, or biomechanical strength between groups in female offspring. In conclusion, gestational BPA exposure and maternal exercise have minimal impact on skeletal outcomes in female adult offspring.

7.
Placenta ; 115: 158-168, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34649169

RESUMO

INTRODUCTION: The mouse placenta accumulates and possibly produces serotonin (5-hydroxytryptamine; 5-HT) in parietal trophoblast giant cells (pTGC) located at the interface between the placenta and maternal deciduum. However, the roles of 5-HT in placental function are unclear. This lack of information is unfortunate, given that selective serotonin-reuptake inhibitors are commonly used to combat depression in pregnant women. The high affinity 5-HT transporter SLC6A4 (also known as SERT) is the target of such drugs and likely controls much of 5-HT uptake into pTGC and other placental cells. We hypothesized that ablation of the Slc6a4 gene would result in morphological changes correlated with placental gene expression changes, especially for those involved in nutrient acquisition and metabolism, and thereby, provide insights into 5-HT placental function. METHODS: Placentas were collected at embryonic age (E) 12.5 from Slc6a4 knockout (KO) and wild-type (WT) conceptuses. Histological analyses, RNAseq, qPCR, and integrative correlation analyses were performed. RESULTS: Slc6a4 KO placentas had a considerable increased pTGC to spongiotrophoblast area ratio relative to WT placentas and significantly elevated expression of genes associated with intestinal functions, including nutrient sensing, uptake, and catabolism, and blood clotting. Integrative correlation analyses revealed upregulation of many of these genes was correlated with pTGC layer expansion. One other key gene was dopa decarboxylase (Ddc), which catalyzes conversion of L-5-hydroxytryptophan to 5-HT. DISCUSSION: Our studies possibly suggest a new paradigm relating to how 5-HT operates in the placenta, namely as a factor regulating metabolic functions and blood coagulation. We further suggest that pTGC might be functional analogs of enterochromaffin 5-HT-positive cells of the intestinal mucosa, which regulate similar activities within the gut. Further work, including proteomics and metabolomic studies, are needed to buttress our hypothesis.


Assuntos
Placenta/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Serotonina/fisiologia , Animais , Dopa Descarboxilase/genética , Dopa Descarboxilase/metabolismo , Feminino , Células Gigantes/fisiologia , Intestinos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/química , Placenta/citologia , Gravidez , RNA/análise , Análise de Sequência de RNA , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Trofoblastos/citologia , Regulação para Cima
8.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34312305

RESUMO

Opioid drugs are increasingly being prescribed to pregnant women. Such compounds can also bind and activate opioid receptors in the fetal brain, which could lead to long-term brain and behavioral disruptions. We hypothesized that maternal treatment with oxycodone (OXY), the primary opioid at the center of the current crisis, leads to later neurobehavioral disorders and gene expression changes in the hypothalamus and hippocampus of resulting offspring. Female mice were treated daily with 5 mg OXY/kg or saline solution (control; CTL) for two weeks before breeding and then throughout gestation. Male and female offspring from both groups were tested with a battery of behavioral and metabolic tests to measure cognition, exploratory-like, anxiety-like, voluntary physical activity, and socio-communication behaviors. qPCR analyses were performed for candidate gene expression patterns in the hypothalamus and hippocampus of OXY and CTL derived offspring. Developmental exposure to OXY caused socio-communication changes that persisted from weaning through adulthood. Such offspring also showed cognitive impairments, reduced voluntary physical activity, and weighed more than CTL counterparts. In the hippocampus, prenatal exposure to OXY caused sex-dependent differences in expression of genes encoding opioid receptors and those involved in serotonin signaling. OXY exposure induced changes in neuropeptide hormone expression and the epigenetic modulator, Dnmt3a, in the hypothalamus, which could result in epigenetic changes in this brain region. The findings suggest cause for concern that consumption of OXY by pregnant mothers may result in permanent neurobehavioral changes in their offspring. Further work is needed to determine the potential underpinning epigenetic mechanisms.


Assuntos
Oxicodona , Efeitos Tardios da Exposição Pré-Natal , Animais , Ansiedade , Epigênese Genética , Feminino , Hipocampo , Hipotálamo , Masculino , Camundongos , Oxicodona/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética
9.
Horm Behav ; 128: 104890, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33221288

RESUMO

Developmental exposure to endocrine disrupting chemicals (EDCs), e.g., bisphenol A (BPA) or genistein (GEN), causes longstanding epigenome effects. MicroRNAs (miRs) regulate which mRNAs will be translated to proteins and thereby serve as the final checkpoint in epigenetic control. Scant amount is known, however, whether EDCs affect neural miRNA (miR) patterns. We aimed to test the hypothesis that developmental exposure of California mice (Peromyscus californicus) to GEN, BPA, or both chemicals influences hypothalamic miR/small RNA profiles and ascertain the extent such biomolecular alterations correlate with behavioral and metabolic changes. California mice were developmentally exposed to GEN (250 mg/kg feed weight, FW), GEN (250 mg/kg FW)+BPA (5 mg/kg FW), low dose (LD) BPA (5 mg/kg FW), or upper dose (UD) BPA (50 mg/kg FW). Adult offspring were tested in a battery of behavioral and metabolic tests; whereupon, mice were euthanized, brains were collected and frozen, small RNAs were isolated from hypothalamic punches, and subsequently sequenced. California mice exposed to one or both EDCs engaged in one or more repetitive behaviors. GEN, LD BPA, and UD BPA altered aspects of ultrasonic and audible vocalizations. Each EDC exposure led to sex-dependent differences in differentially expressed miR/small RNAs with miR7-2, miR146, and miR148a being increased in all female and male EDC exposed groups. Current findings reveal that developmental exposure to GEN and/or BPA affects hypothalamic miR/small RNA expression patterns, and such changes correlate with EDC-induced behavioral and metabolic alterations. miR146 is likely an important mediator and biomarker of EDC exposure in mammals, including humans.


Assuntos
Disruptores Endócrinos , MicroRNAs , Animais , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Feminino , Hipotálamo , Masculino , Camundongos , MicroRNAs/genética , Peromyscus , Caracteres Sexuais
10.
Placenta ; 100: 96-110, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32891007

RESUMO

INTRODUCTION: Pregnant women are increasingly being prescribed and abusing opioid drugs. As the primary communication organ between mother and conceptus, the placenta may be vulnerable to opioid effects but also holds the key to better understanding how these drugs affect long-term offspring health. We hypothesized that maternal treatment with oxycodone (OXY), the primary opioid at the center of the current crisis, deleteriously affects placental structure and gene expression patterns. METHODS: Female mice were treated daily with 5 mg OXY/kg or saline solution (Control, CTL) for two weeks prior to breeding and until placenta were collected at embryonic age 12.5. A portion of the placenta was fixed for histology, and the remainder was frozen for RNA isolation followed by RNAseq. RESULTS: Maternal OXY treatment reduced parietal trophoblast giant cell (pTGC) area and decreased the maternal blood vessel area within the labyrinth region. OXY exposure affected placental gene expression profiles in a sex dependent manner with female placenta showing up-regulation of many placental enriched genes, including Ceacam11, Ceacam14, Ceacam12, Ceacam13, Prl7b1, Prl2b1, Ctsq, and Tpbpa. In contrast, placenta of OXY exposed males had alteration of many ribosomal proteins. Weighted correlation network analysis revealed that in OXY female vs. CTL female comparison, select modules correlated with OXY-induced placental histological changes. Such associations were lacking in the male OXY vs. CTL male comparison. DISCUSSION: Results suggest OXY exposure alters placental histology. In response to OXY exposure, female placenta responds by upregulating placental enriched transcripts that are either unchanged or downregulated in male placenta. Such changes may shield female offspring from developmental origins of health and disease-based diseases.


Assuntos
Analgésicos Opioides/efeitos adversos , Oxicodona/efeitos adversos , Placenta/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Placenta/metabolismo , Gravidez , Taxa de Gravidez , Razão de Masculinidade , Transcriptoma/efeitos dos fármacos
12.
Sci Rep ; 10(1): 10902, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616744

RESUMO

Xenoestrogens are chemicals found in plant products, such as genistein (GEN), and in industrial chemicals, e.g., bisphenol A (BPA), present in plastics and other products that are prevalent in the environment. Early exposure to such endocrine disrupting chemicals (EDC) may affect brain development by directly disrupting neural programming and/or through the microbiome-gut-brain axis. To test this hypothesis, California mice (Peromyscus californicus) offspring were exposed through the maternal diet to GEN (250 mg/kg feed weight) or BPA (5 mg/kg feed weight, low dose- LD or 50 mg/kg, upper dose-UD), and dams were placed on these diets two weeks prior to breeding, throughout gestation, and lactation. Various behaviors, gut microbiota, and fecal metabolome were assessed at 90 days of age. The LD but not UD of BPA exposure resulted in individuals spending more time engaging in repetitive behaviors. GEN exposed individuals were more likely to exhibit such behaviors and showed socio-communicative disturbances. BPA and GEN exposed females had increased number of metabolites involved in carbohydrate metabolism and synthesis. Males exposed to BPA or GEN showed alterations in lysine degradation and phenylalanine and tyrosine metabolism. Current findings indicate cause for concern that developmental exposure to BPA or GEN might affect the microbiome-gut-brain axis.


Assuntos
Compostos Benzidrílicos/toxicidade , Encéfalo/efeitos dos fármacos , Disbiose/induzido quimicamente , Disruptores Endócrinos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Genisteína/toxicidade , Peromyscus/microbiologia , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/induzido quimicamente , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Dieta , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Lactação , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Metaboloma/efeitos dos fármacos , Peromyscus/embriologia , Peromyscus/crescimento & desenvolvimento , Peromyscus/metabolismo , Lesões Pré-Concepcionais/induzido quimicamente , Gravidez , Complicações na Gravidez/induzido quimicamente , Complicações na Gravidez/microbiologia , Comportamento Social , Especificidade da Espécie , Vocalização Animal
13.
J Neuroendocrinol ; 32(5): e12847, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32297422

RESUMO

The hypothalamus and hippocampus are sensitive to early exposure to endocrine disrupting chemicals (EDCs). Two EDCs that have raised particular concerns are bisphenol A (BPA), a widely prevalent chemical in many common household items, and genistein (GEN), a phyto-oestrogen present in soy and other plants. We hypothesised that early exposure to BPA or GEN may lead to permanent effects on gene expression profiles for both coding RNAs (mRNAs) and microRNAs (miRs), which can affect the translation of mRNAs. Such EDC-induced biomolecular changes may affect behavioural and metabolic patterns. California mice (Peromyscus californicus) male and female offspring were developmentally exposed via the maternal diet to BPA (5 mg kg-1 feed weight low dose [LD] and 50 mg kg-1 feed weight upper dose [UD]), GEN (250 mg kg-1 feed weight) or a phyto-oestrogen-free diet (AIN) control. Behavioural and metabolic tests were performed at 180 days of age. A quantitative polymerase chain reacttion analysis was performed for candidate mRNAs and miRs in the hypothalamus and hippocampus. LD BPA and GEN exposed California mice offspring showed socio-communication impairments. Hypothalamic Avp, Esr1, Kiss1 and Lepr were increased in LD BPA offspring. miR-153 was elevated but miR-181a was reduced in LD BPA offspring. miR-9 and miR-153 were increased in the hippocampi of LD BPA offspring, whereas GEN decreased hippocampal miR-7a and miR-153 expression. Correlation analyses revealed neural expression of miR-153 and miR-181a was associated with socio-communication deficits in LD BPA individuals. The findings reveal a cause for concern such that developmental exposure of BPA or GEN in California mice (and potentially by translation in humans) can lead to long standing neurobehavioural consequences.


Assuntos
Compostos Benzidrílicos/farmacologia , Disruptores Endócrinos/farmacologia , Expressão Gênica/efeitos dos fármacos , Genisteína/farmacologia , Hipocampo/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , MicroRNAs/metabolismo , Fenóis/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Hipocampo/metabolismo , Hipotálamo/metabolismo , MicroRNAs/genética , Peromyscus
14.
Physiol Genomics ; 52(2): 81-95, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841397

RESUMO

Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that suppresses gene expression. Previously, we developed a conditional null model where EZH2 is knocked out in uterus. Deletion of uterine EZH2 increased proliferation of luminal and glandular epithelial cells. Herein, we used RNA-Seq in wild-type (WT) and EZH2 conditional knockout (Ezh2cKO) uteri to obtain mechanistic insights into the gene expression changes that underpin the pathogenesis observed in these mice. Ovariectomized adult Ezh2cKO mice were treated with vehicle (V) or 17ß-estradiol (E2; 1 ng/g). Uteri were collected at postnatal day (PND) 75 for RNA-Seq or immunostaining for epithelial proliferation. Weighted gene coexpression network analysis was used to link uterine gene expression patterns and epithelial proliferation. In V-treated mice, 88 transcripts were differentially expressed (DEG) in Ezh2cKO mice, and Bmp5, Crabp2, Lgr5, and Sprr2f were upregulated. E2 treatment resulted in 40 DEG with Krt5, Krt15, Olig3, Crabp1, and Serpinb7 upregulated in Ezh2cKO compared with control mice. Transcript analysis relative to proliferation rates revealed two module eigengenes correlated with epithelial proliferation in WT V vs. Ezh2cKO V and WT E2 vs. Ezh2cKO E2 mice, with a positive relationship in the former and inverse in the latter. Notably, the ESR1, Wnt, and Hippo signaling pathways were among those functionally enriched in Ezh2cKO females. Current results reveal unique gene expression patterns in Ezh2cKO uterus and provide insight into how loss of this critical epigenetic regulator assumingly contributes to uterine abnormalities.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Transcriptoma , Útero/metabolismo , Animais , Proliferação de Células , Análise por Conglomerados , Biologia Computacional , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Estradiol/farmacologia , Estrogênios/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genótipo , Heterozigoto , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , RNA-Seq , Transdução de Sinais , Regulação para Cima , Útero/anormalidades , Proteínas Wnt/metabolismo
15.
Biol Reprod ; 101(2): 392-404, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141131

RESUMO

Both membrane and nuclear fractions of estrogen receptor 1 (ESR1) mediate 17ß-estradiol (E2) actions. Mice expressing nuclear (n)ESR1 but lacking membrane (m)ESR1 (nuclear-only estrogen receptor 1 [NOER] mice) show reduced E2 responsivity and reproductive abnormalities culminating in adult male and female infertility. Using this model, we investigated whether reproductive pathologies caused by the synthetic estrogen diethylstilbestrol (DES) are mitigated by mESR1 ablation. Homozygous and heterozygous wild-type (WT and HET, respectively) and NOER male and female mice were subcutaneously injected with DES (1 mg/kg body weight [BW]) or vehicle daily from postnatal day (PND) 1-5. Uterine histology was assessed in select DES-treated females at PND 5, whereas others were ovariectomized at PND 60 and treated with E2 (10 µg/kg BW) or vehicle 2 weeks later. Neonatal DES exposure resulted in ovary-independent epithelial proliferation in the vagina and uterus of WT but not NOER females. Neonatal DES treatment also induced ovary-independent adult expression of classical E2-induced transcripts (e.g., lactoferrin [Ltf] and enhancer of zeste homolog 2 [Ezh2]) in WT but not NOER mice. At PND 90, DES-treated WT and HET males showed smaller testes and a high incidence of bacterial pyogranulomatous inflammation encompassing the testes, epididymis and occasionally the ductus deferens with spread to lumbar lymph nodes; such changes were largely absent in NOER males. Results indicate that male and female NOER mice are protected from deleterious effects of neonatal DES, and thus mESR1 signaling is required for adult manifestation of DES-induced reproductive pathologies in both sexes.


Assuntos
Dietilestilbestrol/toxicidade , Receptor alfa de Estrogênio/genética , Estrogênios não Esteroides/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Doenças dos Genitais Masculinos/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...