Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (180)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35285827

RESUMO

Studying the physiological properties of specific synapses in the brain, and how they undergo plastic changes, is a key challenge in modern neuroscience. Traditional in vitro electrophysiological techniques use electrical stimulation to evoke synaptic transmission. A major drawback of this method is its nonspecific nature; all axons in the region of the stimulating electrode will be activated, making it difficult to attribute an effect to a particular afferent connection. This issue can be overcome by replacing electrical stimulation with optogenetic-based stimulation. We describe a method for combining optogenetics with in vitro patch-clamp recordings. This is a powerful tool for the study of both basal synaptic transmission and synaptic plasticity of precise anatomically defined synaptic connections and is applicable to almost any pathway in the brain. Here, we describe the preparation and handling of a viral vector encoding channelrhodopsin protein for surgical injection into a pre-synaptic region of interest (medial prefrontal cortex) in the rodent brain and making of acute slices of downstream target regions (lateral entorhinal cortex). A detailed procedure for combining patch-clamp recordings with synaptic activation by light stimulation to study short- and long-term synaptic plasticity is also presented. We discuss examples of experiments that achieve pathway- and cell-specificity by combining optogenetics and Cre-dependent cell labeling. Finally, histological confirmation of the pre-synaptic region of interest is described along with biocytin labeling of the post-synaptic cell, to allow further identification of the precise location and cell type.


Assuntos
Córtex Entorrinal , Optogenética , Plasticidade Neuronal/fisiologia , Optogenética/métodos , Técnicas de Patch-Clamp , Córtex Pré-Frontal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
2.
J Neurosci ; 40(36): 6978-6990, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32753513

RESUMO

The hippocampus is essential for normal memory but does not act in isolation. The anterior thalamic nuclei may represent one vital partner. Using DREADDs, the behavioral consequences of transiently disrupting anterior thalamic function were examined, followed by inactivation of the dorsal subiculum. Next, the anterograde transport of an adeno-associated virus expressing DREADDs was paired with localized intracerebral infusions of a ligand to target specific input pathways. In this way, the direct projections from the anterior thalamic nuclei to the dorsal hippocampal formation were inhibited, followed by separate inhibition of the dorsal subiculum projections to the anterior thalamic nuclei. To assay spatial working memory, all animals performed a reinforced T-maze alternation task, then a more challenging version that nullifies intramaze cues. Across all four experiments, deficits emerged on the spatial alternation task that precluded the use of intramaze cues. Inhibiting dorsal subiculum projections to the anterior thalamic nuclei produced the severest spatial working memory deficit. This deficit revealed the key contribution of dorsal subiculum projections to the anteromedial and anteroventral thalamic nuclei for the processing of allocentric information, projections not associated with head-direction information. The overall pattern of results provides consistent causal evidence of the two-way functional significance of direct hippocampal-anterior thalamic interactions for spatial processing. At the same time, these findings are consistent with hypotheses that these same, reciprocal interactions underlie the common core symptoms of temporal lobe and diencephalic anterograde amnesia.SIGNIFICANCE STATEMENT It has long been conjectured that the anterior thalamic nuclei might be key partners with the hippocampal formation and that, respectively, they are principally responsible for diencephalic and temporal lobe amnesia. However, direct causal evidence for this functional relationship is lacking. Here, we examined the behavioral consequences of transiently silencing the direct reciprocal interconnections between these two brain regions on tests of spatial learning. Disrupting information flow from the hippocampal formation to the anterior thalamic nuclei and vice versa impaired performance on tests of spatial learning. By revealing the conjoint importance of hippocampal-anterior thalamic pathways, these findings help explain why pathology in either the medial diencephalon or the medial temporal lobes can result in profound anterograde amnesic syndromes.


Assuntos
Hipocampo/fisiologia , Aprendizagem Espacial , Núcleos Talâmicos/fisiologia , Animais , Masculino , Vias Neurais/fisiologia , Ratos
3.
Behav Brain Res ; 359: 536-549, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304702

RESUMO

The rodent anterior thalamic nuclei (ATN) are vital for spatial memory. A consideration of their extensive frontal connections suggests that these nuclei may also subserve non-spatial functions. The current experiments explored the importance of the ATN for different aspects of behavioural flexibility, including their contribution to tasks typically associated with frontal cortex. In Experiment 1, rats with ATN lesions were tested on a series of response and visual discriminations in an operant box and, subsequently, in a water tank. The tasks included assessments of reversal learning as well switches between each discrimination dimension. Results revealed a mild and transient deficit on the operant task that was not specific to any stage of the procedure. In the water tank, the lesion animals were impaired on the reversal of a spatial discrimination but did not differ from controls on any other measure. Experiment 2 examined the impact of ATN damage on a rodent analogue of the 'Stroop', which assesses response choice during stimulus conflict. The lesion animals successfully acquired this task and were able to use contextual information to disambiguate conflicting cue information. However, responding during the initial presentation of conflicting cue information was affected by the lesion. Taken together, these results suggest that the ATN are not required for aspects of behavioural flexibility (discrimination learning, reversals or high-order switches) typically associated with the rat medial prefrontal cortex. The results from Experiment 2 suggest that the non-spatial functions of the ATN may be more aligned with those of the anterior cingulate cortex.


Assuntos
Núcleos Anteriores do Tálamo/fisiologia , Comportamento de Escolha/fisiologia , Aprendizagem por Discriminação/fisiologia , Função Executiva/fisiologia , Reversão de Aprendizagem/fisiologia , Animais , Núcleos Anteriores do Tálamo/patologia , Núcleos Anteriores do Tálamo/fisiopatologia , Percepção Auditiva/fisiologia , Conflito Psicológico , Ácido Ibotênico , Masculino , Aprendizagem em Labirinto/fisiologia , Atividade Motora/fisiologia , N-Metilaspartato , Neurotoxinas , Distribuição Aleatória , Ratos , Comportamento Espacial/fisiologia , Percepção Visual/fisiologia
4.
Behav Neurosci ; 132(5): 378-387, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30321027

RESUMO

The present study examined the effects of excitotoxic lesions in 2 closely related structures, the anterior thalamic nuclei and the retrosplenial cortex, on latent inhibition. Latent inhibition occurs when nonreinforced preexposure to a stimulus retards the subsequent acquisition of conditioned responding to that stimulus. Latent inhibition was assessed in a within-subject procedure with auditory stimuli and food reinforcement. As expected, sham-operated animals were slower to acquire conditioned responding to a stimulus that had previously been experienced without consequence, relative to a non-preexposed stimulus. This latent inhibition effect was absent in rats with excitotoxic lesions in the anterior thalamic nuclei, as these animals conditioned to both stimuli at equivalent rates. The retrosplenial lesions appeared to spare latent inhibition, as these animals displayed a robust stimulus preexposure effect. The demonstration here that anterior thalamic nuclei lesions abolish latent inhibition is consistent with emerging evidence of the importance of these thalamic nuclei for attentional control. (PsycINFO Database Record (c) 2018 APA, all rights reserved).


Assuntos
Núcleos Anteriores do Tálamo/fisiopatologia , Córtex Cerebral/fisiopatologia , Inibição Psicológica , Animais , Núcleos Anteriores do Tálamo/efeitos dos fármacos , Percepção Auditiva/fisiologia , Córtex Cerebral/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Ácido Ibotênico , Masculino , Aprendizagem em Labirinto/fisiologia , Atividade Motora/fisiologia , N-Metilaspartato , Neurotoxinas , Distribuição Aleatória , Ratos
5.
eNeuro ; 5(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527569

RESUMO

To understand the hippocampus, it is necessary to understand the subiculum. Unlike other hippocampal subfields, the subiculum projects to almost all distal hippocampal targets, highlighting its critical importance for external networks. The present studies, in male rats and mice, reveal a new category of dorsal subiculum neurons that innervate both the mammillary bodies (MBs) and the retrosplenial cortex (RSP). These bifurcating neurons comprise almost half of the hippocampal cells that project to RSP. The termination of these numerous collateral projections was visualized within the medial mammillary nucleus and the granular RSP (area 29). These collateral projections included subiculum efferents that cross to the contralateral MBs. Within the granular RSP, the collateral projections form a particularly dense plexus in deep Layer II and Layer III. This retrosplenial termination site colocalized with markers for VGluT2 and neurotensin. While efferents from the hippocampal CA fields standardly collateralize, subiculum projections often have only one target site. Consequently, the many collateral projections involving the RSP and the MBs present a relatively unusual pattern for the subiculum, which presumably relates to how both targets have complementary roles in spatial processing. Furthermore, along with the anterior thalamic nuclei, the MBs and RSP are key members of a memory circuit, which is usually described as both starting and finishing in the hippocampus. The present findings reveal how the hippocampus simultaneously engages different parts of this circuit, so forcing an important revision of this network.


Assuntos
Giro do Cíngulo/citologia , Hipocampo/citologia , Corpos Mamilares/citologia , Neurônios/citologia , Animais , Núcleos Anteriores do Tálamo/citologia , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Técnicas de Rastreamento Neuroanatômico , Ratos , Especificidade da Espécie
6.
Brain Neurosci Adv ; 1(1)2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28944298

RESUMO

This review brings together current knowledge from tract tracing studies to update and reconsider those limbic connections initially highlighted by Papez (1937) for their presumed role in emotion. These connections link hippocampal and parahippocampal regions with the mammillary bodies, the anterior thalamic nuclei, and the cingulate gyrus, all structures now strongly implicated in memory functions. An additional goal of this review is to describe the routes taken by the various connections within this network. The original descriptions of these limbic connections saw their interconnecting pathways forming a serial circuit that began and finished in the hippocampal formation. It is now clear that, with the exception of the mammillary bodies, these various sites are multiply interconnected with each other, including many reciprocal connections. In addition, these same connections are topographically organised, creating further subsystems. This complex pattern of connectivity helps to explain the difficulty of interpreting the functional outcome of damage to any individual site within the network. For these same reasons, Papez' initial concept of a loop beginning and ending in the hippocampal formation needs to be seen as a much more complex system of hippocampal-diencephalic-cingulate connections. The functions of these multiple interactions might be better viewed as principally providing efferent information from the posterior medial temporal lobe. Both a subcortical diencephalic route (via the fornix) and a cortical cingulate route (via retrosplenial cortex) can be distinguished. These routes provide indirect pathways for hippocampal interactions with prefrontal cortex, with the preponderance of both sets of connections arising from the more posterior hippocampal regions. These multi-stage connections complement the direct hippocampal projections to prefrontal cortex, which principally arise from the anterior hippocampus, thereby creating longitudinal functional differences along the anterior-posterior plane of the hippocampus.

7.
Brain Neurosci Adv ; 12017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28685167

RESUMO

BACKGROUND: In the rat brain, context information is thought to engage network interactions between the postrhinal cortex, medial entorhinal cortex, and the hippocampus. In contrast, object information is thought to be more reliant on perirhinal cortex and lateral entorhinal cortex interactions with the hippocampus. METHOD: The 'context network' was explored by mapping expression of the immediate-early gene, c-fos, after exposure to a new spatial environment. RESULTS: Structural equation modelling of Fos counts produced networks of good fit that closely matched prior predictions based on anatomically-grounded functional models. These same models did not, however, fit the Fos data from home-cage controls nor did they fit the corresponding data from a previous study exploring object recognition. These additional analyses highlight the specificity of the context network. The home-cage controls, meanwhile, showed raised levels of inter-area Fos correlations between the many sites examined, i.e., their changes in Fos levels lacked anatomical specificity. Two additional groups of rats received perirhinal cortex lesions. While the loss of perirhinal cortex reduced lateral entorhinal c-fos activity, it did not affect mean levels of hippocampal c-fos expression. Similarly, overall c-fos expression in the prelimbic cortex, retrosplenial cortex and nucleus reuniens of the thalamus appeared unaffected by the perirhinal cortex lesions. CONCLUSION: The perirhinal cortex lesions disrupted network interactions involving the medial entorhinal cortex and the hippocampus, highlighting ways in which perirhinal cortex might affect specific aspects of context learning.

8.
Eur J Neurosci ; 45(11): 1451-1464, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28394458

RESUMO

It has been proposed that the retrosplenial cortex forms part of a 'where/when' information network. The present study focussed on the related issue of whether retrosplenial cortex also contributes to 'what/when' information, by examining object recency memory. In Experiment 1, rats with retrosplenial lesions were found to be impaired at distinguishing the temporal order of objects presented in a continuous series ('Within-Block' condition). The same lesioned rats could, however, distinguish between objects that had been previously presented in one of two discrete blocks ('Between-Block' condition). Experiment 2 used intact rats to map the expression of the immediate-early gene c-fos in retrosplenial cortex following performance of a between-block, recency discrimination. Recency performance correlated positively with levels of c-fos expression in both granular and dysgranular retrosplenial cortex (areas 29 and 30). Expression of c-fos in the granular retrosplenial cortex also correlated with prelimbic cortex and ventral subiculum c-fos activity, the latter also correlating with recency memory performance. The combined findings from both experiments reveal an involvement of the retrosplenial cortex in temporal order memory, which includes both between-block and within-block problems. The current findings also suggest that the rat retrosplenial cortex comprises one of a group of closely interlinked regions that enable recency memory, including the hippocampal formation, medial diencephalon and medial frontal cortex. In view of the well-established importance of the retrosplenial cortex for spatial learning, the findings support the notion that, with its frontal and hippocampal connections, retrosplenial cortex has a key role for both what/when and where/when information.


Assuntos
Encéfalo/fisiologia , Memória Espacial , Animais , Encéfalo/citologia , Masculino , Memória de Longo Prazo , Memória de Curto Prazo , Neurônios/metabolismo , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos
9.
Neuroscience ; 349: 128-143, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28237814

RESUMO

Dense reciprocal connections link the rat anterior thalamic nuclei with the prelimbic, anterior cingulate and retrosplenial cortices, as well as with the subiculum and postsubiculum. The present study compared the ipsilateral thalamic-cortical connections with the corresponding crossed, contralateral connections between these same sets of regions. All efferents from the anteromedial thalamic nucleus to the cortex, as well as those to the subiculum, remained ipsilateral. In contrast, all of these target sites provided reciprocal, bilateral projections to the anteromedial nucleus. While the anteroventral thalamic nucleus often shared this same asymmetric pattern of cortical connections, it received relatively fewer crossed inputs than the anteromedial nucleus. This difference was most marked for the anterior cingulate projections, as those to the anteroventral nucleus remained almost entirely ipsilateral. Unlike the anteromedial nucleus, the anteroventral nucleus also appeared to provide a restricted, crossed projection to the contralateral retrosplenial cortex. Meanwhile, the closely related laterodorsal thalamic nucleus had almost exclusively ipsilateral efferent and afferent cortical connections. Likewise, within the hippocampus, the postsubiculum seemingly had only ipsilateral efferent and afferent connections with the anterior thalamic and laterodorsal nuclei. While the bilateral cortical projections to the anterior thalamic nuclei originated predominantly from layer VI, the accompanying sparse projections from layer V largely gave rise to ipsilateral thalamic inputs. In testing a potentially unifying principle of anterior thalamic - cortical interactions, a slightly more individual pattern emerged that reinforces other evidence of functional differences within the anterior thalamic and also helps to explain the consequences of unilateral interventions involving these nuclei.


Assuntos
Córtex Cerebral/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Animais , Mapeamento Encefálico , Giro do Cíngulo/fisiologia , Núcleos Laterais do Tálamo/fisiologia , Masculino , Ratos , Núcleos Talâmicos/fisiologia
10.
Hippocampus ; 26(11): 1393-1413, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27398938

RESUMO

Perirhinal cortex provides object-based information and novelty/familiarity information for the hippocampus. The necessity of these inputs was tested by comparing hippocampal c-fos expression in rats with or without perirhinal lesions. These rats either discriminated novel from familiar objects (Novel-Familiar) or explored pairs of novel objects (Novel-Novel). Despite impairing Novel-Familiar discriminations, the perirhinal lesions did not affect novelty detection, as measured by overall object exploration levels (Novel-Novel condition). The perirhinal lesions also largely spared a characteristic network of linked c-fos expression associated with novel stimuli (entorhinal cortex→CA3→distal CA1→proximal subiculum). The findings show: I) that perirhinal lesions preserve behavioral sensitivity to novelty, whilst still impairing the spontaneous ability to discriminate novel from familiar objects, II) that the distinctive patterns of hippocampal c-fos activity promoted by novel stimuli do not require perirhinal inputs, III) that entorhinal Fos counts (layers II and III) increase for novelty discriminations, IV) that hippocampal c-fos networks reflect proximal-distal connectivity differences, and V) that discriminating novelty creates different pathway interactions from merely detecting novelty, pointing to top-down effects that help guide object selection. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.


Assuntos
Discriminação Psicológica/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Córtex Perirrinal/fisiologia , Reconhecimento Psicológico/fisiologia , Análise de Variância , Animais , Contagem de Células , Comportamento Exploratório/fisiologia , Hipocampo/anatomia & histologia , Aprendizagem em Labirinto/fisiologia , Proteínas Oncogênicas v-fos/metabolismo , Córtex Perirrinal/lesões , Ratos
11.
Behav Neurosci ; 129(3): 227-43, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26030425

RESUMO

Rats with perirhinal cortex lesions received multiple object recognition trials within a continuous session to examine whether they show false memories. Experiment 1 focused on exploration patterns during the first object recognition test postsurgery, in which each trial contained 1 novel and 1 familiar object. The perirhinal cortex lesions reduced time spent exploring novel objects, but did not affect overall time spent exploring the test objects (novel plus familiar). Replications with subsequent cohorts of rats (Experiments 2, 3, 4.1) repeated this pattern of results. When all recognition memory data were combined (Experiments 1-4), giving totals of 44 perirhinal lesion rats and 40 surgical sham controls, the perirhinal cortex lesions caused a marginal reduction in total exploration time. That decrease in time with novel objects was often compensated by increased exploration of familiar objects. Experiment 4 also assessed the impact of proactive interference on recognition memory. Evidence emerged that prior object experience could additionally impair recognition performance in rats with perirhinal cortex lesions. Experiment 5 examined exploration levels when rats were just given pairs of novel objects to explore. Despite their perirhinal cortex lesions, exploration levels were comparable with those of control rats. While the results of Experiment 4 support the notion that perirhinal lesions can increase sensitivity to proactive interference, the overall findings question whether rats lacking a perirhinal cortex typically behave as if novel objects are familiar, that is, show false recognition. Rather, the rats retain a signal of novelty but struggle to discriminate the identity of that signal.


Assuntos
Comportamento Exploratório/fisiologia , Reconhecimento Psicológico/fisiologia , Lobo Temporal/fisiopatologia , Animais , Estudos de Coortes , Masculino , Aprendizagem em Labirinto/fisiologia , Testes Neuropsicológicos , Desempenho Psicomotor/fisiologia , Ratos , Lobo Temporal/lesões
12.
Behav Brain Res ; 285: 67-78, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25106740

RESUMO

Research into object recognition memory has been galvanised by the introduction of spontaneous preference tests for rodents. The standard task, however, contains a number of inherent shortcomings that reduce its power. Particular issues include the problem that individual trials are time consuming, so limiting the total number of trials in any condition. In addition, the spontaneous nature of the behaviour and the variability between test objects add unwanted noise. To combat these issues, the 'bow-tie maze' was introduced. Although still based on the spontaneous preference of novel over familiar stimuli, the ability to give multiple trials within a session without handling the rodents, as well as using the same objects as both novel and familiar samples on different trials, overcomes key limitations in the standard task. Giving multiple trials within a single session also creates new opportunities for functional imaging of object recognition memory. A series of studies are described that examine the expression of the immediate-early gene, c-fos. Object recognition memory is associated with increases in perirhinal cortex and area Te2 c-fos activity. When rats explore novel objects the pathway from the perirhinal cortex to lateral entorhinal cortex, and then to the dentate gyrus and CA3, is engaged. In contrast, when familiar objects are explored the pathway from the perirhinal cortex to lateral entorhinal cortex, and then to CA1, takes precedence. The switch to the perforant pathway (novel stimuli) from the temporoammonic pathway (familiar stimuli) may assist the enhanced associative learning promoted by novel stimuli.


Assuntos
Hipocampo/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Vias Neurais/fisiologia , Testes Neuropsicológicos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Roedores
13.
Behav Neurosci ; 128(4): 504-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24933661

RESUMO

The expression of the immediate-early gene c-fos was used to compare networks of activity associated with recency memory (temporal order memory) and recognition memory. In Experiment 1, rats were first familiarized with sets of objects and then given pairs of different, familiar objects to explore. For the recency test group, each object in a pair was separated by 110 min in the time between their previous presentations. For the recency control test, each object in a pair was separated by less than a 1 min between their prior presentations. Temporal discrimination of the objects correlated with c-fos activity in the recency test group in several sites, including area Te2, the perirhinal cortex, lateral entorhinal cortex, as well as the dentate gyrus, hippocampal fields CA3 and CA1. For both the test and control conditions, network models were derived using structural equation modeling. The recency test model emphasized serial connections from the perirhinal cortex to lateral entorhinal cortex and then to the CA1 subfield. The recency control condition involved more parallel pathways, but again highlighted CA1 within the hippocampus. Both models contrasted with those derived from tests of object recognition (Experiment 2), because stimulus novelty was associated with pathways from the perirhinal cortex to lateral entorhinal cortex that then involved both the dentate gyrus (and CA3) and CA1 in parallel. The present findings implicate CA1 for the processing of familiar stimuli, including recency discriminations, while the dentate gyrus and CA3 pathways are recruited when the perirhinal cortex signals novel stimuli.


Assuntos
Encéfalo/metabolismo , Genes Precoces , Memória/fisiologia , Rede Nervosa/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Reconhecimento Psicológico/fisiologia , Animais , Masculino , Aprendizagem em Labirinto/fisiologia , Modelos Neurológicos , Ratos
14.
Tissue Eng Part A ; 20(21-22): 2985-97, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24854680

RESUMO

The use of multichannel polymer scaffolds in a complete spinal cord transection injury serves as a deconstructed model that allows for control of individual variables and direct observation of their effects on regeneration. In this study, scaffolds fabricated from positively charged oligo[poly(ethylene glycol)fumarate] (OPF(+)) hydrogel were implanted into rat spinal cords following T9 complete transection. OPF(+) scaffold channels were loaded with either syngeneic Schwann cells or mesenchymal stem cells derived from enhanced green fluorescent protein transgenic rats (eGFP-MSCs). Control scaffolds contained extracellular matrix only. The capacity of each scaffold type to influence the architecture of regenerated tissue after 4 weeks was examined by detailed immunohistochemistry and stereology. Astrocytosis was observed in a circumferential peripheral channel compartment. A structurally separate channel core contained scattered astrocytes, eGFP-MSCs, blood vessels, and regenerating axons. Cells double-staining with glial fibrillary acid protein (GFAP) and S-100 antibodies populated each scaffold type, demonstrating migration of an immature cell phenotype into the scaffold from the animal. eGFP-MSCs were distributed in close association with blood vessels. Axon regeneration was augmented by Schwann cell implantation, while eGFP-MSCs did not support axon growth. Methods of unbiased stereology provided physiologic estimates of blood vessel volume, length and surface area, mean vessel diameter, and cross-sectional area in each scaffold type. Schwann cell scaffolds had high numbers of small, densely packed vessels within the channels. eGFP-MSC scaffolds contained fewer, larger vessels. There was a positive linear correlation between axon counts and vessel length density, surface density, and volume fraction. Increased axon number also correlated with decreasing vessel diameter, implicating the importance of blood flow rate. Radial diffusion distances in vessels significantly correlated to axon number as a hyperbolic function, showing a need to engineer high numbers of small vessels in parallel to improving axonal densities. In conclusion, Schwann cells and eGFP-MSCs influenced the regenerating microenvironment with lasting effect on axonal and blood vessel growth. OPF(+) scaffolds in a complete transection model allowed for a detailed comparative, histologic analysis of the cellular architecture in response to each cell type and provided insight into physiologic characteristics that may support axon regeneration.


Assuntos
Axônios/patologia , Transplante de Células-Tronco Mesenquimais/instrumentação , Neovascularização Fisiológica/fisiologia , Poliésteres/química , Polietilenoglicóis/química , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais , Animais , Células Cultivadas , Análise de Falha de Equipamento , Feminino , Regeneração Tecidual Guiada/instrumentação , Regeneração Tecidual Guiada/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Regeneração Nervosa/fisiologia , Desenho de Prótese , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
15.
Cytotherapy ; 14(10): 1235-44, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23066785

RESUMO

BACKGROUND AIMS: In this study we investigated the effect of neurotrophin-3 (NT-3) and knockdown of NG2, one of the main inhibitory chondroitin sulfate proteoglycans (CSPG), in the glial scar following spinal cord injury (SCI). METHODS: Short hairpin (sh) RNA were designed to target NG2 and were cloned into a lentiviral vector (LV). A LV was also constructed containing NT-3. LV expressing NT-3, shRNA to NG2 or combinations of both vectors were injected directly into contused rat spinal cords 1 week post-injury. Six weeks post-injection of LV, spinal cords were examined by histology for changes in scar size and by immunohistochemistry for changes in expression of CSPG, NT-3, astrocytes, neurons and microglia/macrophages. Motor function was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor scale. RESULTS: Animals that received the combination treatment of LV shNG2 and LV NT-3 showed reduced scar size. These animals also showed an increase in levels of neurons and NG2, a decrease in levels of astrocytes and a significant functional recovery as assessed using the BBB locomotor scale at 2 weeks post-treatment. CONCLUSIONS: The improvement in locomotor recovery and decrease in scar size shows the potential of this gene therapy approach as a therapeutic treatment for SCI.


Assuntos
Antígenos/uso terapêutico , Terapia Genética , Lentivirus/genética , Locomoção , Neurotrofina 3/uso terapêutico , Proteoglicanas/uso terapêutico , RNA Interferente Pequeno/administração & dosagem , Traumatismos da Medula Espinal/terapia , Animais , Antígenos/genética , Antígeno CD11b/metabolismo , Microambiente Celular , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cicatriz/patologia , Cicatriz/fisiopatologia , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Neurocam , Neurotrofina 3/genética , Proteoglicanas/genética , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Coloração e Rotulagem , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...