Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Appl Microbiol ; 61(5): 177-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26582287

RESUMO

Two-component signal transduction systems (TCSs) represent one of the primary means by which bacteria sense and respond to changes in their environment, both intra- and extracellular. The highly conserved WalK (histidine kinase)/WalR (response regulator) TCS is essential for cell wall metabolism of low G+C Gram-positive bacteria and acts as a master regulatory system in controlling and coordinating cell wall metabolism with cell division. Waldiomycin, a WalK inhibitor, has been discovered by screening metabolites from actinomycetes and belongs to the family of angucycline antibiotics. In the present study, we have shown that waldiomycin inhibited autophosphorylation of WalK histidine kinases in vitro from Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis, and Streptococcus mutans at half-maximal inhibitory concentrations of 10.2, 8.8, 9.2, and 25.8 µM, respectively. Quantitative RT-PCR studies of WalR regulon genes have suggested that waldiomycin repressed the WalK/WalR system in B. subtilis and S. aureus cells. Morphology of waldiomycin-treated S. aureus cells displayed increased aggregation instead of proper cellular dissemination. Furthermore, autolysis profiles of S. aureus cells revealed that waldiomycin-treated cells were highly resistant to Triton X-100- and lysostaphin-induced lysis. These phenotypes are consistent with those of cells starved for the WalK/WalR system, indicating that waldiomycin inhibited the autophosphorylation activity of WalK in cells. We have also confirmed that waldiomycin inhibits WalK autophosphorylation in vivo by actually observing the phosphorylated WalK ratio in cells using Phos-tag SDS-PAGE. The results of our current study strongly suggest that waldiomycin targets WalK histidine kinases and inhibits the WalR regulon genes expression, thereby affecting both cell wall metabolism and cell division.


Assuntos
Bacillus subtilis/enzimologia , Inibidores Enzimáticos/farmacologia , Proteínas Quinases/metabolismo , Quinonas/farmacologia , Staphylococcus aureus/enzimologia , Bacillus subtilis/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/enzimologia , Perfilação da Expressão Gênica , Histidina Quinase , Regulon , Staphylococcus aureus/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/enzimologia
2.
J Antibiot (Tokyo) ; 66(8): 459-64, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23632918

RESUMO

WalK, a histidine kinase, and WalR, a response regulator, make up a two-component signal transduction system that is indispensable for the cell-wall metabolism of low GC Gram-positive bacteria. WalK inhibitors are likely to show bactericidal effects against methicillin-resistant Staphylococcus aureus . We discovered a new WalK inhibitor, designated waldiomycin, by screening metabolites from actinomycetes. Waldiomycin belongs to the family of angucycline antibiotics and is structurally related to dioxamycin. Waldiomycin inhibits WalK from S. aureus and Bacillus subtilis at IC50s 8.8 and 10.2 µM, respectively, and shows antibacterial activity with MICs ranging from 4 to 8 µg ml(-1) against methicillin-resistant S. aureus and B. subtilis.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteínas Quinases/efeitos dos fármacos , Quinonas/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Histidina Quinase , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Quinonas/administração & dosagem , Quinonas/química , Transdução de Sinais/efeitos dos fármacos , Streptomyces/metabolismo
3.
Antimicrob Agents Chemother ; 56(7): 3657-63, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22526318

RESUMO

The WalK (histidine kinase)/WalR (response regulator) two-component signal transduction system is a master regulatory system for cell wall metabolism and growth. This system is conserved in low G+C Gram-positive bacteria, including Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis, and Streptococcus mutans. In this study, we found the first antibiotic that functions as a WalK inhibitor (signermycin B) by screening 10,000 Streptomyces extracts. The chemical structure (C(23)H(35)NO(4); molecular weight, 389.5) comprises a tetramic acid moiety and a decalin ring. Signermycin B exhibited antimicrobial activity, with MIC values ranging from 3.13 µg/ml (8 µM) to 6.25 µg/ml (16 µM) against Gram-positive bacteria that possess the WalK/WalR two-component signal transduction system, including the drug-resistant bacteria methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. The half-maximal inhibitory concentrations of signermycin B against WalK in these organisms ranged from 37 to 61 µM. To determine the mechanism of action of signermycin B, surface plasmon resonance response analysis with the two WalK domains of Bacillus subtilis and competition assay with ATP were performed. The results showed that signermycin B binds to the dimerization domain but not the ATP-binding domain of WalK. In the presence of the cross-linker glutaraldehyde, signermycin B did not cause protein aggregation but interfered with the cross-linking of WalK dimers. These results suggest that signermycin B targets the conserved dimerization domain of WalK to inhibit autophosphorylation. In Bacillus subtilis and Staphylococcus aureus, signermycin B preferentially controlled the WalR regulon, thereby inhibiting cell division. These phenotypes are consistent with those of cells starved for the WalK/WalR system.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas Quinases/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Histidina Quinase , Testes de Sensibilidade Microbiana , Proteínas Quinases/genética , Multimerização Proteica/efeitos dos fármacos , Regulon/efeitos dos fármacos , Regulon/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...