Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Behav Brain Res ; 419: 113669, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800548

RESUMO

The striatal beat frequency model assumes that striatal medium spiny neurons encode duration via synaptic plasticity. Muscarinic 1 (M1) cholinergic receptors as well as dopamine and glutamate receptors are important for neural plasticity in the dorsal striatum. Therefore, we investigated the effect of inhibiting these receptors on the formation of duration memory. After sufficient training in a peak interval (PI)-20-s procedure, rats were administered a single or mixed infusion of a selective antagonist for the dopamine D1 receptor (SCH23390, 0.5 µg per side), N-methyl-D-aspartic acid (NMDA)-type glutamate receptor (D-AP5, 3 µg), or M1 receptor (pirenzepine, 10 µg) bilaterally in the dorsal striatum, immediately before initiating a PI-40 s session (shift session). The next day, the rats were tested for new duration memory (40 s) in a session in which no lever presses were reinforced (test session). In the shift session, the performance was comparable irrespective of the drug injected. However, in the test session, the mean peak time (an index of duration memory) of the M1 + NMDA co-blockade group, but not of the D1 + NMDA co-blockade group, was lower than that of the control group (Experiments 1 and 2). In Experiment 3, the effect of the co-blockade of M1 and NMDA receptors was replicated. Moreover, sole blockade of M1 receptors induced the same effect as M1 and NMDA blockade. These results suggest that in the dorsal striatum, the M1 receptor, but not the D1 or NMDA receptors, is involved in the consolidation of duration memory.


Assuntos
Antagonistas de Dopamina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Consolidação da Memória/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Neostriado/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Percepção do Tempo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Antagonistas de Dopamina/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Masculino , Antagonistas Muscarínicos/administração & dosagem , Ratos , Ratos Wistar , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
2.
Metabolites ; 11(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34564398

RESUMO

To elucidate the mechanisms underlying maternal undernutrition (MUN)-induced fetal skeletal muscle growth impairment in cattle, the longissimus thoracis muscle of Japanese Black fetal calves at 8.5 months in utero was analyzed by an integrative approach with metabolomics and transcriptomics. The pregnant cows were fed on 60% (low-nutrition, LN) or 120% (high-nutrition, HN) of their overall nutritional requirement during gestation. MUN markedly decreased the bodyweight and muscle weight of the fetus. The levels of amino acids (AAs) and arginine-related metabolites including glutamine, gamma-aminobutyric acid (GABA), and putrescine were higher in the LN group than those in the HN group. Metabolite set enrichment analysis revealed that the highly different metabolites were associated with the metabolic pathways of pyrimidine, glutathione, and AAs such as arginine and glutamate, suggesting that MUN resulted in AA accumulation rather than protein accumulation. The mRNA expression levels of energy metabolism-associated genes, such as PRKAA1, ANGPTL4, APLNR, CPT1B, NOS2, NOS3, UCP2, and glycolytic genes were lower in the LN group than in the HN group. The gene ontology/pathway analysis revealed that the downregulated genes in the LN group were associated with glucose metabolism, angiogenesis, HIF-1 signaling, PI3K-Akt signaling, pentose phosphate, and insulin signaling pathways. Thus, MUN altered the levels of AAs and expression of genes associated with energy expenditure, glucose homeostasis, and angiogenesis in the fetal muscle.

3.
Anim Sci J ; 92(1): e13600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327770

RESUMO

This study aimed to investigate the effects of high and low levels of energy intake during the entire gestation period on the skeletal muscle development, organ development, and adipose tissue accumulation in fetuses of Wagyu (Japanese Black) cows, a breed with highly marbled beef. Cows were allocated to a high-nutrition (n = 6) group (fed 120% of the nutritional requirement) or low-nutrition (n = 6) group (fed 60% of the nutritional requirement). The cows were artificially inseminated with semen from the same sire, and the fetuses were removed by cesarean section at 260 ± 8.3 days of fetal age and slaughtered. The whole-body, total muscle, adipose, and bone masses of the fetal half-carcasses were significantly higher in the high-nutrition group than the low-nutrition group (p = 0.0018, 0.009, 0.0004, and 0.0362, respectively). Fifteen of 20 individual muscles, five of six fat depots, nine of 17 organs, and seven of 12 bones that were investigated had significantly higher masses in the high-nutrition group than the low-nutrition group. The crude components and amino acid composition of the longissimus muscle significantly differed between the low- and high-nutrition groups. These data indicate that maternal nutrition during gestation has a marked effect on the muscle, bone, and adipose tissue development of Wagyu cattle fetuses.


Assuntos
Cesárea , Fenômenos Fisiológicos da Nutrição Materna , Tecido Adiposo , Animais , Bovinos , Cesárea/veterinária , Feminino , Feto , Músculo Esquelético , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...