Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 532(2): e25579, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38204156

RESUMO

Extensive analysis of the flower-visiting behavior of a butterfly, Papilio xuthus, has indicated complex interaction between chromatic, achromatic, and motion cues. Their eyes are spectrally rich with six classes of photoreceptors, respectively sensitive in the ultraviolet, violet, blue, green, red, and broad-band wavelength regions. Here, we studied the anatomy and physiology of photoreceptors and second-order neurons of P. xuthus, focusing on their spectral sensitivities and projection terminals to address where the early visual integration takes place. We thus found the ultraviolet, violet, and blue photoreceptors and all second-order neurons terminate in the distal region of the second optic ganglion, the medulla. We identified five types of second-order neurons based on the arborization in the first optic ganglion, the lamina, and the shape of the medulla terminals. Their spectral sensitivity is independent of the morphological types but reflects the combination of pre-synaptic photoreceptors. The results indicate that the distal medulla is the most plausible region for early visual integration.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Olho , Neurônios
2.
J Comp Neurol ; 531(14): 1482-1508, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37478205

RESUMO

Serotonin (5-hydroxytryptamine) acts as a widespread neuromodulator in the nervous system of vertebrates and invertebrates. In insects, it promotes feeding, enhances olfactory sensitivity, modulates aggressive behavior, and, in the central complex of Drosophila, serves a role in sleep homeostasis. In addition to a role in sleep-wake regulation, the central complex has a prominent role in spatial orientation, goal-directed locomotion, and navigation vector memory. To further understand the role of serotonergic signaling in this brain area, we analyzed the distribution and identity of serotonin-immunoreactive neurons across a wide range of insect species. While one bilateral pair of tangential neurons innervating the central body was present in all species studied, a second type was labeled in all neopterans but not in dragonflies and firebrats. Both cell types show conserved major fiber trajectories but taxon-specific differences in dendritic targets outside the central body and axonal terminals in the central body, noduli, and lateral accessory lobes. In addition, numerous tangential neurons of the protocerebral bridge were labeled in all studied polyneopteran species except for Phasmatodea, but not in Holometabola. Lepidoptera and Diptera showed additional labeling of two bilateral pairs of neurons of a third type. The presence of serotonin in systems of columnar neurons apparently evolved independently in dragonflies and desert locusts. The data suggest distinct evolutionary changes in the composition of serotonin-immunolabeled neurons of the central complex and provides a promising basis for a phylogenetic study in a wider range of arthropod species.


Assuntos
Odonatos , Serotonina , Animais , Serotonina/metabolismo , Filogenia , Neurônios/metabolismo , Encéfalo/anatomia & histologia , Insetos
3.
Trends Neurosci ; 46(5): 338-340, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931972

RESUMO

The swallowtail butterfly, Papilio xuthus, has excellent color discrimination abilities, and its visible light spectrum is notably wide. We discuss the neural basis of color vision in P. xuthus, highlighting some of the evolutionary adaptations in this species in relation to other insects. These adaptations include inter-photoreceptor (PR) interactions that produce spectral-opponent PRs, and complex higher order color-coding neurons.


Assuntos
Borboletas , Visão de Cores , Humanos , Animais , Percepção de Cores/fisiologia , Borboletas/fisiologia , Neurônios
4.
Philos Trans R Soc Lond B Biol Sci ; 377(1862): 20210277, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36058242

RESUMO

A pattern of two equally bright colours contains only chromatic contrast. Unlike in flies, such a pattern elicits strong optokinetic responses in the butterfly Papilio xuthus. To investigate the neural basis of chromatic motion vision, we performed single-cell electrophysiology. We found spiking neurons exhibiting direction-selective motion sensitivity in the second optic ganglion, the medulla. We analysed the response characteristics of these neurons using two-colour stripe patterns moving vertically. We systematically manipulated the intensities of the colours so that the set of presented patterns included an isoluminant condition for the butterfly. Moving patterns containing only chromatic contrast still elicited a response in the neurons. The neurons' sensitivity profile is similar to that of the behavioural responses. Post-recording dye injection revealed that the neurons have dendrites in the ventral lateral protocerebrum and axonal processes in the medulla, suggesting a feedback role. Presumably, the neurons contribute to subtracting wide-field motion to facilitate the detection of small moving targets. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.


Assuntos
Borboletas , Visão de Cores , Percepção de Movimento , Animais , Borboletas/fisiologia , Percepção de Cores/fisiologia , Percepção de Movimento/fisiologia , Neurônios Motores , Estimulação Luminosa
5.
Curr Biol ; 32(10): 2291-2299.e3, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35439432

RESUMO

Connectomics has become a standard neuroscience methodology in a few model animals,1 with the visual system being a popular target of study.2-5 Combining connectomics with circuit and behavioral physiology, recent studies on the color vision of the fruit fly Drosophila melanogaster have focused on the mechanisms underlying early wavelength processing in the optic ganglia.6-8 However, the color vision capabilities of D. melanogaster are limited,9 compared with many flower-visiting insects.10,11 For example, a butterfly Papilio xuthus has six spectral classes of photoreceptors. Each ommatidium contains nine photoreceptors in one of three fixed combinations, making the eye an array of three spectrally distinct ommatidia types.12 Behaviorally, P. xuthus can detect 1 nm differences in light wavelength across the spectrum from ultraviolet to red, outperforming humans.13 What is the neuronal basis of such precise color vision? How does such a system evolve? Addressing these questions requires comparative studies at the circuit level. Here, we performed a connectome analysis in the first optic ganglion, the lamina, of P. xuthus. The lamina comprises cartridges, each typically containing nine photoreceptor axons from a single ommatidium and four second-order neurons. We found abundant inter-photoreceptor connections, which are absent in the lamina of D. melanogaster. We also identified connections between neighboring cartridges, particularly those receiving inputs from spectrally distinct ommatidia. The linear summation of synaptic connections well explains the spectral sensitivity of photoreceptors and second-order neurons in the lamina.


Assuntos
Borboletas , Conectoma , Animais , Borboletas/fisiologia , Percepção de Cores/fisiologia , Drosophila melanogaster , Células Fotorreceptoras de Invertebrados/fisiologia , Vias Visuais/fisiologia
6.
Curr Biol ; 32(3): R114-R115, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35134355

RESUMO

Colour is an important visual modality for many animals including insects. The flower-foraging swallowtail butterfly Papilio xuthus has spectrally acute chromatic vision using UV-, blue-, green- and red-sensitive photoreceptors1. The spectral organization of Papilio's retina is well understood but, as for other insects, how chromatic information is processed in higher order brain regions remains unclear. To identify neurons underlying color perception in Papilio, we have investigated the spectral properties of the visual inputs to the mushroom body (MB), a brain region implicated in learning and memory. By recording intracellular responses to a series of monochromatic lights, combined with dye injection, we have revealed a wide variety of spectral responses in three morphologically distinct neuron types. These heterogeneous responses are characterized by colour opponency and sharp tuning to particular wavelengths, which do not in general align with the sensitivities of the retinal photoreceptors, and presumably contribute to Papilio's acute wavelength discrimination. This finding provides new insights into the processing underlying insect colour vision.


Assuntos
Borboletas , Visão de Cores , Animais , Borboletas/fisiologia , Percepção de Cores/fisiologia , Corpos Pedunculados , Neurônios
7.
Insects ; 12(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34821847

RESUMO

Flower-foraging Japanese yellow swallowtail butterflies, Papilio xuthus, exhibit sophisticated visual abilities. When ovipositing, females presumably attempt to select suitable leaves to support the growth of their larval offspring. We first established that butterflies indeed select particular leaves on which to lay eggs; when presented with a single Citrus tree, butterflies significantly favored two out of 102 leaves for oviposition. These preferences were observed across many individuals, implying that they were not merely idiosyncratic, but rather based on properties of the leaves in question. Because the butterflies descended towards the leaves rather directly from a distance, we hypothesized that they base their selection on visual cues. We measured five morphological properties (height, orientation, flatness, roundness, and size) and four reflective features (green reflectance, brightness, and degree and angle of linear polarization). We found that the number of eggs laid upon a leaf was positively correlated with its height, flatness, green reflectance, and brightness, and negatively correlated with its degree of polarization, indicating that these features may serve as cues for leaf selection. Considering that other studies report ovipositing butterflies' preference for green color and horizontally polarized light, butterflies likely use multiple visual features to select egg-laying sites on the host plant.

8.
Curr Opin Insect Sci ; 42: 76-83, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33010475

RESUMO

Papilio butterflies' ability to forage for flowers relies upon multiple visual cues such as color, brightness, and motion. Papilio learns the color of rewarding flowers and detects it at a distance. Its color vision is based on four photoreceptor classes: UV, blue, green, and red, providing sensitive wavelength discrimination. These four receptor classes also contribute to the perception of brightness and polarization. Papilio's motion vision is based on a different set of receptors: green, red, and broad band. This implies that two visual pathways exist in Papilio. The contribution of several receptor classes not only for chromatic vision but also achromatic vision likely enhances the butterfly's ability to detect flowers in complex visual environments.


Assuntos
Borboletas/fisiologia , Percepção de Cores/fisiologia , Comportamento Alimentar/fisiologia , Visão Ocular/fisiologia , Animais , Borboletas/anatomia & histologia , Flores , Retina/citologia , Retina/fisiologia
9.
J Exp Biol ; 223(Pt 3)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900350

RESUMO

Several butterflies of family Nymphalidae perform long-distance migration. Extensive studies of migration in the iconic monarch butterfly Danaus plexippus have revealed that vision plays a crucial role in migratory orientation. Differences in the migratory patterns of butterflies suggest that not all species are exposed to the same visual conditions and yet, little is known about how the visual system varies across migratory species. Here, we used intracellular electrophysiology, dye injection and electron microscopy to assess the spectral and polarization properties of the photoreceptors of a migrating nymphalid, Parantica sita Our findings reveal three spectral classes of photoreceptors including ultraviolet, blue and green receptors. The green receptor class contains three subclasses, which are broad, narrow and double-peaking green receptors. Ultraviolet and blue receptors are sensitive to polarized light parallel to the dorso-ventral axis of the animal, while the variety of green receptors are sensitive to light polarized at 45 deg, 90 deg and 135 deg away from the dorso-ventral axis. The polarization sensitivity ratio is constant across spectral receptor classes at around 1.8. Although P. sita has a typical nymphalid eye with three classes of spectral receptors, subtle differences exist among the eyes of migratory nymphalids, which may be genus specific.


Assuntos
Borboletas/fisiologia , Percepção de Cores , Olho Composto de Artrópodes/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Migração Animal , Animais
10.
J Exp Biol ; 222(Pt 1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602464

RESUMO

The swallowtail butterfly Papilio xuthus can perceive the linear polarization of light. Using a novel polarization projection system, we recently demonstrated that P. xuthus can detect visual motion based on polarization contrast. In the present study, we attempt to infer via behavioural experiments the mechanism underlying this polarization-based motion vision. Papilio xuthus do not perceive contrast between unpolarized and diagonally polarized light, implying that they cannot unambiguously estimate angle and degree of polarization, at least as far as motion detection is concerned. Furthermore, they conflate brightness and polarization cues, such that bright vertically polarized light resembles dim unpolarized light. These observations are consistent with a one-channel 'monopolatic' detector mechanism. We extend our existing model of motion vision in P. xuthus to incorporate these polarization findings, and conclude that the photoreceptors likely to form the basis for the putative monopolatic polarization detector are R3 and R4, which respond maximally to horizontally polarized green light. R5-R8, we propose, form a polarization-insensitive secondary channel tuned to longer wavelengths of light. Consistent with this account, we see greater sensitivity to polarization for green-light stimuli than for subjectively equiluminant red ones. Somewhat counter-intuitively, our model predicts greatest sensitivity to vertically polarized light; owing to the non-linearity of photoreceptor responses, light polarized to an angle orthogonal to a monopolatic detector's orientation offers the greatest contrast with unpolarized light.


Assuntos
Borboletas/fisiologia , Percepção de Cores/fisiologia , Percepção de Movimento/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais
11.
J Comp Neurol ; 527(8): 1348-1361, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458068

RESUMO

Jumping spiders have four pairs of eyes (ocelli) of which only the principal eyes (PEs) are used to detect features of objects. Photoreceptors in the retina of the PEs form four layers (PL1-4) and terminate in the first optic ganglion (FOG). Here, we focus on Hasarius adansoni because it has unique depth vision besides color vision and its FOG appears to contribute to the initial processing of these visual modalities. We first investigated the neuroanatomical organization of the FOG. The three-dimensional structure of the FOG revealed by synapsin immunostaining is horseshoe-shaped and consists of four terminal zones (TZ1-4). Then, we traced single photoreceptors through serial sections and found that green-sensitive receptors of PL1 and 2 terminate in TZ1 and 2, respectively, by keeping retinotopic organization. In contrast to TZ1 and 2, TZ3 receives terminals of ultraviolet-sensitive receptors from lateral regions of both PL3 and 4, while photoreceptors of the medial region of PL3 and 4 terminate in TZ4. We further studied details of photoreceptor terminals and the branching pattern of interneurons in the FOG in Golgi stained preparations. Photoreceptors have long lateral processes in each terminal zone. Some photoreceptors terminating in TZ3 have branches innervating TZ1, indicating that TZ1 receives different spectral information. A type of interneuron connects TZ1 and 2, while others have branches within a single terminal zone or in the entire FOG. These results suggest that TZ1 and 2 contribute to color, shape, and depth vision, while TZ3 and 4 have specific roles for UV vision.


Assuntos
Células Fotorreceptoras/citologia , Retina/citologia , Aranhas/citologia , Vias Visuais/citologia , Animais , Gânglios/citologia
12.
J Exp Biol ; 221(Pt 12)2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29712749

RESUMO

Lamina monopolar cells (LMCs) are the first-order visual interneurons of insects and crustacea, primarily involved in achromatic vision. Here, we investigated morphological and electrophysiological properties of LMCs in the butterfly Papilio xuthus Using intracellular recording coupled with dye injection, we found two types of LMCs. Cells with roundish terminals near the distal surface of the medulla demonstrating no or small depolarizing spikes were classified as L1/2. Cells with elongated terminals deep in the medulla that showed prominent spiking were classified as L3/4. The majority of LMCs of both types had broad spectral sensitivities, peaking between 480 and 570 nm. Depending on the experimental conditions, spikes varied from small to action potential-like events, with their amplitudes and rates decreasing as stimulus brightness increased. When the eye was stimulated with naturalistic contrast-modulated time series, spikes were reliably triggered by high-contrast components of the stimulus. Spike-triggered average functions showed that spikes emphasize rapid membrane depolarizations. Our results suggest that spikes are mediated by voltage-activated Na+ channels, which are mainly inactivated at rest. Strong local minima in the coherence functions of spiking LMCs indicate that the depolarizing conductance contributes to the amplification of graded responses even when detectable spikes are not evoked. We propose that the information transfer strategies of spiking LMCs change with light intensity. In dim light, both graded voltage signals and large spikes are used together without mutual interference, as a result of separate transmission bandwidths. In bright light, signals are non-linearly amplified by the depolarizing conductance in the absence of detectable spikes.


Assuntos
Potenciais de Ação/fisiologia , Borboletas/fisiologia , Interneurônios/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Borboletas/citologia , Feminino , Interneurônios/citologia , Masculino , Visão Ocular/fisiologia
13.
Front Neural Circuits ; 11: 96, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238294

RESUMO

Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV)- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd), specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins) first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved.


Assuntos
Borboletas/crescimento & desenvolvimento , Borboletas/metabolismo , Proteínas de Insetos/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Borboletas/anatomia & histologia , Borboletas/ultraestrutura , Olho Composto de Artrópodes/anatomia & histologia , Olho Composto de Artrópodes/crescimento & desenvolvimento , Olho Composto de Artrópodes/metabolismo , Olho Composto de Artrópodes/ultraestrutura , Feminino , Hibridização In Situ , Microscopia Eletrônica , Células Fotorreceptoras de Invertebrados/ultraestrutura , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Integr Comp Biol ; 57(5): 1130-1138, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992194

RESUMO

While the linear polarization of light is virtually invisible to humans, many invertebrates' eyes can detect it. How this information is processed in the nervous system, and what behavioral function it serves, are in many cases unclear. One reason for this is the technical difficulty involved in presenting images or video containing polarization contrast, particularly if intensity and/or color contrast is also required. In this primarily methods-focused article, we present a novel technique based on projecting video through a synchronously rotating linear polarizer. This approach allows the intensity, angle of polarization, degree of linear polarization, and potentially also color of individual pixels to be controlled independently. We characterize the performance of our system, and then use it to investigate the relationship between polarization and motion vision in the swallowtail butterfly Papilio xuthus. Although this animal has photoreceptors sensitive to four different polarization angles, we find that its motion vision cannot distinguish between diagonally-polarized and unpolarized light. Furthermore, it responds more strongly to vertically-polarized moving objects than horizontally-polarized ones. This implies that Papilio's polarization-based motion detection employs either an unbalanced two-channel (dipolatic) opponent architecture, or possibly a single-channel (monopolatic) scheme without opponent mechanisms.


Assuntos
Borboletas/fisiologia , Percepção de Movimento , Visão Ocular , Animais , Feminino , Masculino
15.
Bioessays ; 39(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28169433

RESUMO

As most work on flower foraging focuses on bees, studying Lepidoptera can offer fresh perspectives on how sensory capabilities shape the interaction between flowers and insects. Through a combination of innate preferences and learning, many Lepidoptera persistently visit particular flower species. Butterflies tend to rely on their highly developed sense of colour to locate rewarding flowers, while moths have evolved sophisticated olfactory systems towards the same end. However, these modalities can interact in complex ways; for instance, butterflies' colour preference can shift depending on olfactory context. The mechanisms by which such cross-modal interaction occurs are poorly understood, but the mushroom bodies appear to play a central role. Because of the diversity seen within Lepidoptera in terms of their sensory capabilities and the nature of their relationships with flowers, they represent a fruitful avenue for comparative studies to shed light on the co-evolution of flowers and flower-visiting insects.


Assuntos
Percepção de Cores , Aprendizagem , Lepidópteros/fisiologia , Percepção Olfatória , Animais , Evolução Biológica , Cor , Feminino , Flores , Lepidópteros/genética , Masculino , Olfato
16.
J Exp Biol ; 219(Pt 24): 3857-3860, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27802146

RESUMO

We investigated colour discrimination and learning in adult males of the nocturnal cotton bollworm moth, Helicoverpa armigera, under a dim light condition. The naive moths preferred blue and discriminated the innately preferred blue from several shades of grey, indicating that the moths have colour vision. After being trained for 2 days to take nectar at a yellow disc, an innately non-preferred colour, moths learned to select yellow over blue. The choice distribution between yellow and blue changed significantly from that of naive moths. However, the dual-choice distribution of the trained moths was not significantly biased to yellow: the preference for blue is robust. We also tried to train moths to grey, which was not successful. The limited ability to learn colours suggests that H armigera may not strongly rely on colours when searching for flowers in the field, although they have the basic property of colour vision.


Assuntos
Comportamento de Escolha/fisiologia , Gossypium/parasitologia , Aprendizagem , Mariposas/fisiologia , Animais , Cor , Visão de Cores/fisiologia , Masculino , Análise Espectral
17.
Nature ; 535(7611): 280-4, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27383790

RESUMO

Butterflies rely extensively on colour vision to adapt to the natural world. Most species express a broad range of colour-sensitive Rhodopsin proteins in three types of ommatidia (unit eyes), which are distributed stochastically across the retina. The retinas of Drosophila melanogaster use just two main types, in which fate is controlled by the binary stochastic decision to express the transcription factor Spineless in R7 photoreceptors. We investigated how butterflies instead generate three stochastically distributed ommatidial types, resulting in a more diverse retinal mosaic that provides the basis for additional colour comparisons and an expanded range of colour vision. We show that the Japanese yellow swallowtail (Papilio xuthus, Papilionidae) and the painted lady (Vanessa cardui, Nymphalidae) butterflies have a second R7-like photoreceptor in each ommatidium. Independent stochastic expression of Spineless in each R7-like cell results in expression of a blue-sensitive (Spineless(ON)) or an ultraviolet (UV)-sensitive (Spineless(OFF)) Rhodopsin. In P. xuthus these choices of blue/blue, blue/UV or UV/UV sensitivity in the two R7 cells are coordinated with expression of additional Rhodopsin proteins in the remaining photoreceptors, and together define the three types of ommatidia. Knocking out spineless using CRISPR/Cas9 (refs 5, 6) leads to the loss of the blue-sensitive fate in R7-like cells and transforms retinas into homogeneous fields of UV/UV-type ommatidia, with corresponding changes in other coordinated features of ommatidial type. Hence, the three possible outcomes of Spineless expression define the three ommatidial types in butterflies. This developmental strategy allowed the deployment of an additional red-sensitive Rhodopsin in P. xuthus, allowing for the evolution of expanded colour vision with a greater variety of receptors. This surprisingly simple mechanism that makes use of two binary stochastic decisions coupled with local coordination may prove to be a general means of generating an increased diversity of developmental outcomes.


Assuntos
Borboletas/anatomia & histologia , Borboletas/fisiologia , Visão de Cores/fisiologia , Retina/citologia , Retina/fisiologia , Animais , Borboletas/citologia , Cor , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Evolução Molecular , Feminino , Lógica , Células Fotorreceptoras de Invertebrados/metabolismo , Retina/anatomia & histologia , Rodopsina/metabolismo , Processos Estocásticos , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Biol Lett ; 11(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26490417

RESUMO

Many insects' motion vision is achromatic and thus dependent on brightness rather than on colour contrast. We investigate whether this is true of the butterfly Papilio xuthus, an animal noted for its complex retinal organization, by measuring head movements of restrained animals in response to moving two-colour patterns. Responses were never eliminated across a range of relative colour intensities, indicating that motion can be detected through chromatic contrast in the absence of luminance contrast. Furthermore, we identify an interaction between colour and contrast polarity in sensitivity to achromatic patterns, suggesting that ON and OFF contrasts are processed by two channels with different spectral sensitivities. We propose a model of the motion detection process in the retina/lamina based on these observations.


Assuntos
Borboletas/fisiologia , Percepção de Movimento , Animais , Comportamento Animal/fisiologia , Cor , Percepção de Cores/fisiologia , Percepção de Movimento/fisiologia , Retina/fisiologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-26329322

RESUMO

The eyes of the Japanese yellow swallowtail butterfly, Papilio xuthus, contain six spectral classes of photoreceptors, each sensitive either in the ultraviolet, violet, blue, green, red or broadband wavelength regions. The green-sensitive receptors can be divided into two subtypes, distal and proximal. Previous behavioral and anatomical studies have indicated that the distal subtype appears to be involved in motion vision, while the proximal subtype is important for color vision. Here, we studied the dynamic properties of Papilio photoreceptors using light stimulation with randomly modulated intensity and light pulses. Frequency response (gain) of all photoreceptor classes shared a general profile-a broad peak around 10 Hz with a declining slope towards higher frequency range. At 100 Hz, the mean relative gain of the distal green receptors was significantly larger than any other receptor classes, indicating that they are the fastest. Photoreceptor activities under dim light were higher in the ultraviolet and violet receptors, suggesting higher transduction sensitivities. Responses to pulse stimuli also distinguished the green receptors from others by their shorter response latencies. We thus concluded that the distal green receptors carry high frequency information in the visual system of Papilio xuthus.


Assuntos
Potenciais de Ação/fisiologia , Borboletas/fisiologia , Percepção de Cores/fisiologia , Visão de Cores/fisiologia , Percepção de Movimento/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Análise de Variância , Animais , Eletrofisiologia , Feminino , Masculino , Estimulação Luminosa , Células Fotorreceptoras de Invertebrados/classificação
20.
Biol Lett ; 11(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26179802

RESUMO

Flower-visiting insects exhibit innate preferences for particular colours. A previous study demonstrated that naive Papilio xuthus females prefer yellow and red, whereas males are more attracted to blue. Here, we demonstrate that the innate colour preference can be modified by olfactory stimuli in a sexually dimorphic manner. Naive P. xuthus were presented with four coloured discs: blue, green, yellow and red. The innate colour preference (i.e. the colour first landed on) of the majority of individuals was blue. When scent from essential oils of either orange flower or lily was introduced to the room, females' tendency to select the red disc increased. Scents of lavender and flowering potted Hibiscus rosa-sinensis, however, were less effective. Interestingly, the odour of the non-flowering larval host plant, Citrus unshiu, shifted the preference to green in females. In males, however, all plant scents were less effective than in females, such that blue was always the most favoured colour. These observations indicate that interactions between visual and olfactory cues play a more prominent role in females.


Assuntos
Borboletas/fisiologia , Animais , Comportamento Apetitivo/fisiologia , Citrus/química , Cor , Sinais (Psicologia) , Feminino , Flores/química , Masculino , Odorantes , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...