Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 46(2): 1607-1625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37688656

RESUMO

Alzheimer's disease (AD), the most common cause of dementia in the elderly, is characterized by the accumulation of intracellular neurofibrillary tangles, extracellular amyloid plaques, and neuroinflammation. In partnership with microglial cells, astrocytes are key players in the regulation of neuroinflammation. Fatty acid binding protein 7 (FABP7) belongs to a family of conserved proteins that regulate lipid metabolism, energy homeostasis, and inflammation. FABP7 expression is largely restricted to astrocytes and radial glia-like cells in the adult central nervous system. We observed that treatment of primary hippocampal astrocyte cultures with amyloid ß fragment 25-35 (Aß25-35) induces FABP7 upregulation. In addition, FABP7 expression is upregulated in the brain of APP/PS1 mice, a widely used AD mouse model. Co-immunostaining with specific astrocyte markers revealed increased FABP7 expression in astrocytes. Moreover, astrocytes surrounding amyloid plaques displayed increased FABP7 staining when compared to non-plaque-associated astrocytes. A similar result was obtained in the brain of AD patients. Whole transcriptome RNA sequencing analysis of human astrocytes differentiated from induced pluripotent stem cells (i-astrocytes) overexpressing FABP7 identified 500 transcripts with at least a 2-fold change in expression. Gene Ontology enrichment analysis identified (i) positive regulation of cytokine production and (ii) inflammatory response as the top two statistically significant overrepresented biological processes. We confirmed that wild-type FABP7 overexpression induces an NF-κB-driven inflammatory response in human i-astrocytes. On the other hand, the expression of a ligand-binding impaired mutant FABP7 did not induce NF-κB activation. Together, our results suggest that the upregulation of FABP7 in astrocytes could contribute to the neuroinflammation observed in AD.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Idoso , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doenças Neuroinflamatórias , Placa Amiloide/metabolismo , NF-kappa B/metabolismo , Proteínas Supressoras de Tumor/metabolismo
2.
NPJ Microgravity ; 9(1): 21, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941263

RESUMO

Spaceflight presents a multifaceted environment for plants, combining the effects on growth of many stressors and factors including altered gravity, the influence of experiment hardware, and increased radiation exposure. To help understand the plant response to this complex suite of factors this study compared transcriptomic analysis of 15 Arabidopsis thaliana spaceflight experiments deposited in the National Aeronautics and Space Administration's GeneLab data repository. These data were reanalyzed for genes showing significant differential expression in spaceflight versus ground controls using a single common computational pipeline for either the microarray or the RNA-seq datasets. Such a standardized approach to analysis should greatly increase the robustness of comparisons made between datasets. This analysis was coupled with extensive cross-referencing to a curated matrix of metadata associated with these experiments. Our study reveals that factors such as analysis type (i.e., microarray versus RNA-seq) or environmental and hardware conditions have important confounding effects on comparisons seeking to define plant reactions to spaceflight. The metadata matrix allows selection of studies with high similarity scores, i.e., that share multiple elements of experimental design, such as plant age or flight hardware. Comparisons between these studies then helps reduce the complexity in drawing conclusions arising from comparisons made between experiments with very different designs.

3.
Curr Drug Targets ; 23(12): 1191-1209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35702767

RESUMO

Activation of the receptor for advanced glycation end products (RAGE) has been shown to play an active role in the development of multiple neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Although originally identified as a receptor for advanced glycation end products, RAGE is a pattern recognition receptor able to bind multiple ligands. The final outcome of RAGE signaling is defined in a context and cell type specific manner and can exert both neurotoxic and neuroprotective functions. Contributing to the complexity of the RAGE signaling network, different RAGE isoforms with distinctive signaling capabilities have been described. Moreover, multiple RAGE ligands bind other receptors and RAGE antagonism can significantly affect their signaling. Here, we discuss the outcome of celltype specific RAGE signaling in neurodegenerative pathologies. In addition, we will review the different approaches that have been developed to target RAGE signaling and their therapeutic potential. A clear understanding of the outcome of RAGE signaling in a cell type- and disease-specific manner would contribute to advancing the development of new therapies targeting RAGE. The ability to counteract RAGE neurotoxic signaling while preserving its neuroprotective effects would be critical for the success of novel therapies targeting RAGE signaling.


Assuntos
Fármacos Neuroprotetores , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Ligantes , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Isoformas de Proteínas , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...