Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nematol ; 55(1): 20230030, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37818528

RESUMO

We previously reported soybean fields double-cropped with winter wheat having reduced soybean cyst nematode (SCN) (Heterodera glycines) counts compared to fallow. A follow-up metagenomics study identified several fungal and bacterial taxa enriched in wheat fields, and some were reported to parasitize SCN. Knowing that phytocompounds with potential nematicidal activity are released via wheat roots and stubble, we implemented a dichloromethane-based extraction method and a gas chromatography-mass spectrometry (GCMS) system to investigate soil chemical profiles of samples collected from these fields and review the potential nematicidal activity of compounds with higher concentration in double cropping fields. 51 compounds were detected during the GCMS analysis, eight with unknown identification. Several compounds, including multiple fatty acids, had larger relative peak areas when double-cropped, compared to fallow samples. This study, along with our previously published one, provided a better understanding of the mechanisms that govern the effect of wheat on SCN populations. Rather than driven by a single mechanism, the suppression of SCN in soybean fields double-cropped with winter wheat was potentially linked to enriched microbial communities, increased populations of beneficial organisms, and higher concentrations of chemicals with potential nematicidal activity. To our knowledge, this is the first study using GCMS to characterize soil chemical profiles in soybean fields double-cropped with winter wheat regarding the suppression of SCN populations.

2.
J Am Soc Mass Spectrom ; 31(11): 2321-2327, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33103892

RESUMO

The equilibrium nature of a plume of laser desorbed material is examined through the application of a previously developed thermodynamic model to the ion signals observed in 337 nm MALDI mass spectra of mixtures of the matrix sinapic acid with the amino acids alanine, valine, isoleucine, and phenylalanine. Samples are prepared using both conventional dried-droplet and solvent-free methods for comparison. The relative yield of protonated amino acid is shown to increase as the amino acid gas-phase basicity increases for both sample preparation methods. Matrix gas phase basicity values extracted from the equilibrium plots are shown to be in good agreement ([M - H+]• 876 kJ/mol and [M] 879 kJ/mol) with published experimental values supporting a mechanism wherein the protonated sinapic acid and/or the matrix radical cation act as the proton donor species. These experiments further reveal that there is a large difference in the extracted plume effective temperatures with the solvent-free method yielding lower effective temperatures as compared to the dried-droplet sample preparation, e.g., 552 K versus 1296 K, respectively, at M/A 1:1 (mole/mole). In addition, these experiments suggest that plume effective temperatures decrease as the relative amount of matrix deposited with the analyte increases, regardless of the sample preparation method. Cumulatively, these observations suggest that the crystalline solid allows more efficient transfer of the photoexcitation energy during the sample desorption step, as compared to the solvent-free sample, and/or collisional cooling is more effective for the plume of material desorbed from the solvent-free sample as compared to the conventional dried-droplet sample.

3.
Sci Rep ; 9(1): 6131, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992528

RESUMO

Fabrication of inexpensive and flexible electronic and electrochemical sensors is in high demand for a wide range of biochemical and biomedical applications. We explore hand fabrication of CNT modified AgNPs electrodes using wax-on-plastic platforms and their application in electrochemical immunosensing. Wax patterns were printed on polyethylene terephthalate-based substrates to laydown templates for the electrodes. Hand painting was employed to fabricate a silver conductive layer using AgNPs ink applied in the hydrophilic regions of the substrate surrounded by wax. CNT was drop cast on top of the working electrodes to improve their electrochemical signal. The device layers were characterized by scanning electron microscopy. The electrochemical performance of the hand fabricated AgNPs and CNT/AgNPs electrodes was tested using cyclic voltammetry, differential pulse voltammetry, and amperometry. The electrochemical response of CNT/AgNPs electrodes was relatively faster, higher, and more selective than unmodified AgNPs sensing electrodes. Finally, the hand-painted CNT/AgNPs electrodes were applied to detect carcinoembryonic antigen (CEA) by measuring the end-product of immunoassay performed on magnetic particles. The detection limit for CEA was found to be 0.46 ng/mL.

4.
J Vet Res ; 62(1): 103-108, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29978134

RESUMO

INTRODUCTION: The efficiency of five natural antioxidants (curcumin, cranberry, pomegranate, grape seed extract (GSE), and açai berry) in reducing lipid oxidation in dog food was compared to that of the synthetic antioxidant butylated hydroxyanisole (BHA). MATERIAL AND METHODS: In two different experiments content parameters were measured after 12 days of storage at 55°C. In experiment one, the natural antioxidants were added at 0.2% and BHA at 0.02% of the food (DM basis), and samples were analysed for thiobarbituric acid-reactive substances (TBARS). In experiment two, the effects of GSE and curcumin at two admixture proportions (0.1% and 0.2% of food DM) on omega-3 fatty acid (FA) content were evaluated. RESULTS: TBARS values were lower than the control (P < 0.01) for curcumin, cranberry, pomegranate, and GSE but not for the açai berry (P > 0.05). By day 12, although there were no significant differences (P > 0.05) between the two curcumin treatments, they preserved higher concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (P < 0.05) than the BHA and control treatments. The addition of GSE or BHA to dog food held (P < 0.05) the concentrations of EPA higher than the control. The concentrations of EPA and DHA for the 0.2% GSE treatment were greater (P < 0.05) than the 0.1% GSE treatment. Grape seed extract at 0.2% lost less (P < 0.05) EPA concentration than BHA. CONCLUSION: The present results showed that, except for açai berry, the tested natural antioxidants could be used as a substitute for BHA in dog food.

5.
ACS Omega ; 3(6): 6419-6426, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023947

RESUMO

Tomatoes (Solanum lycopersicum) are heavy nutrient feeding crops and require high amounts of nitrogen to maximize fruit production. The type of nitrogen applied and timing of fertilizer applications are important to reduce losses due to volatilization and leaching. Previous research suggested that nitrogen stable isotopes are a useful fingerprinting system for indicating if a crop has been grown with synthetic or organic nitrogen applications. To study the effects of fertilization systems on nitrogen isotopic patterns, "Better Bush" tomatoes were grown in a 2 year greenhouse experiment to analyze nitrogen isotopic composition, nitrogen content, and fruit yield. Three main soil fertility treatments were evaluated, and the results were compared to those obtained on plants grown in unfertilized soil: conventional inorganic (synthetic Miracle Grow (MG)), organic (bonemeal and bloodmeal (BB), BB with liquid Earth Juice (BBL), BB with 25% vermicompost (VC), BBL with 25% VC, and 25% VC), and mixed (MG with 25% VC). The soil fertilizers, treated and untreated soil, immature and mature leaflets tomato fruit peels, and fruit juices were analyzed for both nitrogen isotope ratios and nitrogen concentrations. Plant δ15Nair decreased in the order organic treatment-no fertilizer-mixed treatment-conventional treatment. The average δ15Nair values in leaves, fruit peels, and juice from plants grown with organic treatments ranged from 4.5 to 11.9, 5.4 to 10.1, and 6.1 to 11.1‰, respectively, whereas in the case of the inorganic treatment, the average δ15Nair values varied between -3.0 and 0.4, -1.1 and 0.4, and -0.9 and 1.9‰, respectively. Plant nitrogen concentrations in tomato decreased in the following order (from highest to lowest): inorganic soil fertility treatment, mixed treatments, and organic and control (no fertilizer) treatment. The average weight %N values in leaves and fruit peels from plants grown with organic treatments ranged from 1.3 to 4.2 and 1.1 to 2.3%, respectively, whereas in the case of the inorganic treatment, the average weight %N values varied between 3.7 and 5 and 1.3 and 2.8%, respectively. Plants grown under organic treatments have higher δ15Nair, lower weight %N, and are enriched in 15N compared with the original soil than plants grown with inorganic fertilizer, suggesting that the synthetic nitrogen sources are more readily available for plant uptake than the organic ones. The addition of vermicompost increases both δ15Nair and weight %N in plants. Tomato fruit yields did not differ between cluster 1 and cluster 2 harvest, however, total tomato fruit yields differed indicating that synthetically fertilized plants produced the highest total yields (g) (P ≤ 0.05). However, all treatments with VC soil applications indicated an increase in the amount of plant nitrogen, fruit yield, soil cation exchange capacity, soil organic matter content, and released soil nitrogen. Nitrogen isotope ratios of tomatoes can be used to distinguish among various soil fertility treatments, therefore fingerprinting the organic fertilizer applications.

6.
Chem Cent J ; 9: 39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106445

RESUMO

BACKGROUND: The use of medicinal plants has been reported throughout human history. In the fight against illnesses, medicinal plants represent the primary health care system for 60 % of the world's population. Flavonoids are polyphenolic compounds with active anti-microbial properties; they are produced in plants as pigments. Quercetin, myricetin, and rutin are among the most well-known and prevalent flavonoids in plants, with an antioxidant activity capable of decreasing the oxidation of low density lipoproteins [LDLs]. To date, this research is the first of its kind to employ a coupled thin-layer chromatography (TLC) and a densitometric quantification method with a Box-Behnken design (BBD) response surface methodology (RSM) for optimization of ultrasonic-assisted extraction and determination of rutin and quercetin from peach and ellagic acid and myricetin from pumpkin fruits. RESULTS: The effect of process variables (extraction temperature (°C), extraction power (%) and extraction time (min)) on ultrasound-assisted extraction (UAE) were examined by using BBD and RSM. TLC followed by Quantity-One™ (BioRad) image analysis as a simple and rapid method was used for identification and quantification of the compounds in complex mixtures. The results were consistent under optimal conditions among the experimental values and their predicted values. A mass spectrometry (MALDI-TOF MS) technique was also used to confirm the identity of the natural products in the TLC spots resolved. CONCLUSION: The results show that the coupled TLC-densitometric methods & BBD can be a very powerful approach to qualitative and quantitative analysis of; rutin and quercetin from peach extracts; and ellagic acid and myricetin contents from pumpkin extracts.

7.
Molecules ; 20(4): 6611-25, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25875040

RESUMO

The extraction of lutein and ß-carotene from spinach (Spinacia oleracea L.) leaves is important to the dietary supplement industry. A Box-Behnken design and response surface methodology (RSM) were used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE) of lutein and ß-carotene from spinach. Three independent variables, extraction temperature (°C), extraction power (%) and extraction time (min) were studied. Thin-layer chromatography (TLC) followed by UV visualization and densitometry was used as a simple and rapid method for both identification and quantification of lutein and ß-carotene during UAE. Methanol extracts of leaves from spinach and authentic standards of lutein and ß-carotene were separated by normal-phase TLC with ethyl acetate-acetone (5:4 (v/v)) as the mobile phase. In this study, the combination of TLC, densitometry, and Box-Behnken with RSM methods were effective for the quantitative analysis of lutein and ß-carotene from spinach extracts. The resulting quadratic polynomial models for optimizing lutein and ß-carotene from spinach had high coefficients of determination of 0.96 and 0.94, respectively. The optimal UAE settings for output of lutein and ß-carotene simultaneously from spinach extracts were an extraction temperature of 40 °C, extraction power of 40% (28 W/cm3) and extraction time of 16 min. The identity and purity of each TLC spot was measured using time-of-flight mass spectrometry. Therefore, UAE assisted extraction of carotenes from spinach can provide a source of lutein and ß-carotene for the dietary supplement industry.


Assuntos
Fracionamento Químico/métodos , Luteína/química , Spinacia oleracea/química , Ondas Ultrassônicas , beta Caroteno/química , Cromatografia em Camada Fina , Luteína/isolamento & purificação , Espectrometria de Massas , beta Caroteno/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...