Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(30): 11345-11355, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37464745

RESUMO

The performance of membrane capacitive deionization (MCDI) desalination was investigated at bench, pilot, and field scales for the removal of uranium from groundwater. It was found that up to 98.9% of the uranium can be removed using MCDI from a groundwater source containing 50 µg/L uranium, with the majority (94.5%) being retained on the anode. Uranium was found to physiochemically adsorb to the electrode without the application of a potential by displacing chloride ions, with 16.6% uranium removal at the bench scale via this non-electrochemical process. This displacement of chloride did not occur during the MCDI adsorption phase with the adsorption of all ions remaining constant during a time series analysis on the pilot unit. For the scenarios tested on the pilot unit, the flowrate of the product water ranged from 0.15 to 0.23 m3/h, electrode energy consumption from 0.28 to 0.51 kW h/m3, and water recovery from 69 to 86%. A portion (13-53% on the pilot unit) of the uranium was found to remain on the electrodes after the brine discharge phase with conventional cleaning techniques unable to release this retained uranium. MCDI was found to be a suitable means to remove uranium from groundwater systems though with the need to manage the accumulation of uranium on the electrodes over time.


Assuntos
Água Subterrânea , Urânio , Purificação da Água , Cloretos , Purificação da Água/métodos , Adsorção , Eletrodos , Água
2.
Sci Total Environ ; 851(Pt 1): 158241, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007652

RESUMO

Numerous legacy near-surface radioactive waste sites dating from the mid 20th century have yet to be remediated and present a global contamination concern. Typically, there is insufficient understanding of contaminant release and redistribution, with invasive investigations often impractical due to the risk of disturbing the often significantly radiotoxic contaminants. Consequently, a replica waste trench (~5.4 m3), constructed adjacent to a legacy radioactive waste site (Little Forest Legacy Site, LFLS), was used to assist our understanding of the release and mixing processes of neodymium (Nd) - a chemical analogue for plutonium(III) and americium(III), two significant radionuclides in many contaminated environments. In order to clarify the behaviour of contaminants released from buried objects such as waste containers, a steel drum, representative of the hundreds of buried drums within the LFLS, was placed within the trench. Dissolved neodymium nitrate was introduced as a point-source contaminant to the base of the trench, outside the steel drum. Hydrologic conditions were manipulated to simulate natural rainfall intensities with dissolved lithium bromide added as a tracer. Neodymium was primarily retained both at its point of release at the bottom of the trench (>97 %) as well as at a steel container corrosion point, simulated through the emplacement of steel wool. However, over the 8-month field experiment, advective mixing initiated by surface water intrusions rapidly redistributed a small proportion of Nd to shallower waters (~1.5-1.7 %), as well as throughout the buried steel drum. Suspended particulate forms of Nd (>0.2 µm) were measured at all depths in the suboxic trench and were persistent across the entire study. Analyses of the microbial communities showed that their relative abundances and metabolic functions were strongly influenced by the prevailing geochemical conditions as a result of fluctuating water depths associated with rainfall events. The site representing steel corrosion exhibited divergent biogeochemical results with anomalous changes (sharp decrease) observed in both dissolved contaminant concentration as well as microbial diversity and functionality. This research demonstrates that experimental trenches provide a safe and unique method for simulating the behaviour of subsurface radioactive contaminants with results demonstrating the initial retention, partial shallow water redistribution, and stability of particulate form(s) of this radioactive analogue. These results have relevance for appropriate management and remediation strategies for the adjacent legacy site as well as for similar sites across the globe.


Assuntos
Plutônio , Resíduos Radioativos , Amerício/análise , Neodímio , Nitratos/análise , Plutônio/análise , Resíduos Radioativos/análise , Radioisótopos/análise , Aço , Água/análise
3.
Geobiology ; 20(4): 546-559, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35312212

RESUMO

Microbialites are sedimentary rocks created in association with benthic microorganisms. While they harbour complex microbial communities, Cyanobacteria perform critical roles in sediment stabilisation and accretion. Microbialites have been described from permanent and ephemeral saline lakes in South Australia; however, the microbial communities that generate and inhabit these biogeological structures have not been studied in detail. To address this knowledge gap, we investigated the composition, diversity and metabolic potential of bacterial communities from different microbialite-forming mats and surrounding sediments in five South Australian saline coastal lakes using 16S rRNA gene sequencing and predictive metagenome analyses. While Proteobacteria and Bacteroidetes were the dominant phyla recovered from the mats and sediments, Cyanobacteria were significantly more abundant in the mat samples. Interestingly, at lower taxonomic levels, the mat communities were vastly different across the five lakes. Comparative analysis of putative mat and sediment metagenomes via PICRUSt2 revealed important metabolic pathways driving the process of carbonate precipitation, including cyanobacterial oxygenic photosynthesis, ureolysis and nitrogen fixation. These pathways were highly conserved across the five examined lakes, although they appeared to be performed by distinct groups of bacterial taxa found in each lake. Stress response, quorum sensing and circadian clock were other important pathways predicted by the in silico metagenome analysis. The enrichment of CRISPR/Cas and phage shock associated genes in these cyanobacteria-rich communities suggests that they may be under selective pressure from viral infection. Together, these results highlight that a very stable ecosystem function is maintained by distinctly different communities in microbialite-forming mats in the five South Australian lakes and reinforce the concept that 'who' is in the community is not as critical as their net metabolic capacity.


Assuntos
Cianobactérias , Microbiota , Austrália , Cianobactérias/genética , Sedimentos Geológicos/química , Lagos/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Austrália do Sul
4.
Sci Total Environ ; 823: 153727, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149061

RESUMO

Causal factors underlying coal workers' pneumoconiosis (CWP) have been variously attributed to the presence of carbon, crystalline silica and reduced iron (Fe) minerals, especially pyrite and Fe/Si-amorphous compounds. The aim of this research was to assess the role of iron in CWP and, more specifically, the cytotoxicity of coal dusts with different elemental composition towards alveolar macrophages (AMs). Survival rate of AMs, alteration in the production of pro-inflammatory cytokine TNF-α, MDA (the lipid peroxidation product) and intracellular GSH were assessed using commercial assay kits. The quantitative interaction between iron and GSH was investigated by developing a numerical model. The presence of various reduced Fe minerals (viz. pyrite and siderite) in coal dusts exhibited a consistently acute adverse impact on the viability of AMs and enhanced the production of TNF-α. The presence of the clinically available Fe chelator deferiprone (DFP) and the cytosolic antioxidant glutathione (GSH) significantly increased the viability of AMs exposed to Fe bearing coal dusts, suggesting coal dusts containing reduced Fe minerals were likely contributors to the initial stages of AM cytotoxicity via a ferroptosis related pathway. Chemical kinetic modeling indicated that these results may be attributed to an enhanced consumption of GSH as a result of Fe redox cycling. FeIIGSH and GS• produced from the interaction between ferric Fe and GSH facilitated the production of O2•- which further oxidized GSH via a direct reaction between GSH and GS• or GSO•. These results suggest that coal dusts containing reduced Fe minerals and Fe compounds may elevate acute inflammation levels in AMs, indicating that crystalline silica may not be the only hazard of concern in mining environments.


Assuntos
Minas de Carvão , Ferroptose , Pneumoconiose , Carvão Mineral/toxicidade , Poeira , Humanos , Macrófagos Alveolares/metabolismo
5.
Sci Total Environ ; 816: 151533, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34762955

RESUMO

Anaerobic co-digestion of sludge increases biogas production and maintains anaerobic digestion stability. However, it is unclear whether the addition of co-substrates may increase the concentration of trace organic contaminants (TrOCs) and metals, limiting potential resource recovery opportunities when applied to agricultural land. This study explored the occurrence of 20 TrOCs and 18 metals in wastewater sludge anaerobically co-digested with beverage rejects (cola, beer and juice) and food wastes. TrOCs results showed that cola reject caused an accumulation of caffeine in final digestate. Bisphenol A also significantly increased in food waste co-digestion when compared with the mono-digestion (control). No significant difference in TrOCs was observed in the juice reject co-digestion. Analysis of the metal composition revealed a significant increase in Cr and Al in juice reject co-digested sludge. While restaurant food waste increased concentrations of K and Ca, both of which may be beneficial when applied to land. All metals in this study were below the maximum permissible concentrations specified for agricultural land use in Australia. Environmental risk assessment of sludge when used as soil fertiliser, showed that caffeine, diuron, triclocarban, triclosan, Cu and Zn exhibited high risks, with the largest risk quotient (RQ) posed by caffeine. Estrone and naproxen implied medium risks, and ibuprofen implied a high risk except for the co-digestion using cola reject (RQ = 0.9, medium risk). The results emphasise the importance for wastewater utility operators to understand the impact of co-substrate selection on the quality of sludge to minimise environmental risk from the use of biosolids on agricultural land.


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Alimentos , Medição de Risco , Águas Residuárias
6.
Sci Total Environ ; 810: 152277, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902414

RESUMO

Coal workers' pneumoconiosis (CWP) is a preventable occupational lung disease caused by the chronic inhalation of coal mine dust. The inhalation of coal mine dusts can result in the development of a range of lung diseases termed coal mine dust lung diseases, which is not limited to CWP and includes silicosis, bronchitis, emphysema and cancer. For decades, the presence of elemental Fe, C and Si has been proposed to be the causal factors underlying CWP. The recent resurgence of CWP globally with examination of cases in the United States suggesting a potential but inconclusive role of Fe(II)-sulfide minerals. To obtain a better understanding of Australian coals, the existence and potential adverse impacts of iron minerals were examined using 24 representative Australian coal samples. The results of this work revealed that reduced iron minerals were widely distributed within samples obtained from Australian coal mines with pyrite and siderite being particularly abundant. Compared with carbon and crystalline silica, the presence of these specific iron minerals were negatively correlated to the viability of both alveolar macrophages (NR8383) and human lung epithelial cells (A549) (R2 = 0.689) under scenarios reflecting biologically-relevant inflammatory response conditions. Further analysis using Welch's unpaired t-test indicated that the presence of reduced iron minerals statistically enhanced acellular oxidant production (90% CI [0.74 to 2.55]) and inflammatory response (90% CI [0.15 to 36.96]). Compared with Fe(II)-hydroxide, Fe(II)- and Fe(III)-(phyllo)silicate and Fe(II)-sulfate mineralogies, pyrite and siderite bearing dusts are likely to have greater adverse impacts on epithelial lung cells under inflammatory response conditions in view of both their iron content and reactivity.


Assuntos
Minas de Carvão , Pneumoconiose , Austrália , Sobrevivência Celular , Carvão Mineral/análise , Poeira/análise , Células Epiteliais , Compostos Férricos , Humanos , Ferro/análise , Pulmão , Minerais , Oxidantes , Estados Unidos
7.
Front Microbiol ; 12: 732575, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737728

RESUMO

During the 1960s, small quantities of radioactive materials were co-disposed with chemical waste at the Little Forest Legacy Site (LFLS, Sydney, Australia). The microbial function and population dynamics in a waste trench during a rainfall event have been previously investigated revealing a broad abundance of candidate and potentially undescribed taxa in this iron-rich, radionuclide-contaminated environment. Applying genome-based metagenomic methods, we recovered 37 refined archaeal MAGs, mainly from undescribed DPANN Archaea lineages without standing in nomenclature and 'Candidatus Methanoperedenaceae' (ANME-2D). Within the undescribed DPANN, the newly proposed orders 'Ca. Gugararchaeales', 'Ca. Burarchaeales' and 'Ca. Anstonellales', constitute distinct lineages with a more comprehensive central metabolism and anabolic capabilities within the 'Ca. Micrarchaeota' phylum compared to most other DPANN. The analysis of new and extant 'Ca. Methanoperedens spp.' MAGs suggests metal ions as the ancestral electron acceptors during the anaerobic oxidation of methane while the respiration of nitrate/nitrite via molybdopterin oxidoreductases would have been a secondary acquisition. The presence of genes for the biosynthesis of polyhydroxyalkanoates in most 'Ca. Methanoperedens' also appears to be a widespread characteristic of the genus for carbon accumulation. This work expands our knowledge about the roles of the Archaea at the LFLS, especially, DPANN Archaea and 'Ca. Methanoperedens', while exploring their diversity, uniqueness, potential role in elemental cycling, and evolutionary history.

8.
Environ Sci Technol ; 55(13): 8793-8805, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34110792

RESUMO

Results of investigations into factors influencing contaminant mobility in a replica trench located adjacent to a legacy radioactive waste site are presented in this study. The trench was filled with nonhazardous iron- and organic matter (OM)-rich components, as well as three contaminant analogues strontium, cesium, and neodymium to examine contaminant behavior. Imposed redox/water-level oscillations, where oxygen-laden rainwater was added to the anoxic trench, resulted in marked biogeochemical changes including the removal of aqueous Fe(II) and circulation of dissolved carbon, along with shifts to microbial communities involved in cycling iron (Gallionella, Sideroxydans) and methane generation (Methylomonas, Methylococcaceae). Contaminant mobility depended upon element speciation and rainfall event intensity. Strontium remained mobile, being readily translocated under hydrological perturbations. Strong ion-exchange reactions and structural incorporation into double-layer clay minerals were likely responsible for greater retention of Cs, which, along with Sr, was unaffected by redox oscillations. Neodymium was initially immobilized within the anoxic trenches, due to either secondary mineral (phosphate) precipitation or via the chemisorption of organic- and carbonate-Nd complexes onto variably charged solid phases. Oxic rainwater intrusions altered Nd mobility via competing effects. Oxidation of Fe(II) led to partial retention of Nd within highly sorbing Fe(III)/OM phases, whereas pH decreases associated with rainwater influxes resulted in a release of adsorbed Nd to solution with both pH and OM presumed to be the key factors controlling Nd attenuation. Collectively, the behavior of simulated contaminants within this replica trench provided unique insights into trench water biogeochemistry and contaminant cycling in a redox oscillatory environment.


Assuntos
Resíduos Radioativos , Compostos Férricos , Ferro , Minerais , Oxirredução , Resíduos Radioativos/análise
9.
Water Res ; 194: 116939, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33640752

RESUMO

It is critical to both effectively remove and recover phosphate (P) from wastewater given the wide-ranging environmental (i.e., preventing eutrophication and restoring water quality) and economic (i.e., overcoming P resource scarcity) benefits. More recently, considerable academic effort has been devoted towards harvesting P as vivianite, which can be used as a potential slow-release fertilizer and possible reagent for the manufacture of lithium iron phosphate (LiFePO4), the precursor in fabricating Li-ion secondary batteries. In this study, we propose an innovative P recovery process, in which P is first preconcentrated via a flow-electrode capacitive deionization (FCDI) device followed by immobilization as vivianite crystals in a fluidized bed crystallization (FBC) column. The effects of different operational parameters on FCDI P preconcentration performance and energy consumption are investigated. Results show that 63% of P can be removed and concentrated in the flow-electrode chamber with a reasonable energy requirement under optimal operating conditions. The FBC system resulted in immobilization of ~80% of P as triangular or quadrangular pellets, which were verified to be high-purity vivianite crystals by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and extended X-ray absorption fine structure (EXAFS) spectroscopy. This study provides a pathway for efficient recovery of P as a value-added product (i.e., vivianite) from P-rich wastewaters.


Assuntos
Purificação da Água , Cristalização , Eletrodos , Compostos Ferrosos , Fosfatos
10.
Environ Sci Technol ; 54(19): 12539-12549, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32897064

RESUMO

The formation of vivianite (Fe3(PO4)2·8H2O) in iron (Fe)-dosed wastewater treatment facilities has the potential to develop into an economically feasible method of phosphorus (P) recovery. In this work, a long-term steady FeIII-dosed University of Cape Town process-membrane bioreactor (UCT-MBR) system was investigated to evaluate the role of Fe transformations in immobilizing P via vivianite crystallization. The highest fraction of FeII, to total Fe (Fetot), was observed in the anaerobic chamber, revealing that a redox condition suitable for FeIII reduction was established by improving operational and configurational conditions. The supersaturation index for vivianite in the anaerobic chamber varied but averaged ∼4, which is within the metastable zone and appropriate for its crystallization. Vivianite accounted for over 50% of the Fetot in the anaerobic chamber, and its oxidation as it passed through the aerobic chambers was slow, even in the presence of high dissolved oxygen concentrations at circumneutral pH. This study has shown that the high stability and growth of vivianite crystals in oxygenated activated sludge can allow for the subsequent separation of vivianite as a P recovery product.


Assuntos
Ferro , Fósforo , Compostos Ferrosos , Fosfatos , Esgotos , Eliminação de Resíduos Líquidos
11.
J Environ Radioact ; 211: 106081, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31666204

RESUMO

This paper examines the distributions of several anthropogenic radionuclides (239+240Pu, 241Am, 137Cs, 90Sr, 60Co and 3H) at a legacy trench disposal site in eastern Australia. We compare the results to previously published data for Pu and tritium at the site. Plutonium has previously been shown to reach the surface by a bath-tubbing mechanism, following filling of the former trenches with water during intense rainfall events. This has led to some movement of Pu away from the trenched area, and we also provide evidence of elevated Pu concentrations in shallow subsurface layers above the trenched area. The distribution of 241Am is similar to Pu, and this is attributed to the similar chemistry of these actinides and the likely in-situ generation of 241Am from its parent 241Pu. Concentrations of 137Cs are mostly low in surface soils immediately above the trenches. However, similar to the actinides, there is evidence of elevated 137Cs and 90Sr concentrations in shallow subsurface layers above the trenched area. While the subsurface radionuclide peaks suggest a mechanism of subsurface transport, their interpretation is complicated by the presence of soil layers added following disposals and during the subsequent years. The distribution of 90Sr and 137Cs at the ground surface shows some elevated levels immediately above the trenches which were filled during the final 24 months of disposal operations. This is in agreement with disposal records, which indicate that greater amounts of fission products were disposed in this period. The surface distribution of 239+240Pu is also consistent with the disposal documents. Although there is extensive evidence of a mobile tritium plume in groundwater, migration of the other radionuclides by this pathway is limited. The data highlight the importance of taking into account multiple pathways for the mobilisation of key radioactive contaminants at legacy waste trench sites.


Assuntos
Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Austrália , Poluentes Radioativos da Água
12.
Environ Sci Technol ; 53(5): 2739-2747, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30758954

RESUMO

Unacceptably high uranium concentrations in decentralized and remote potable groundwater resources, especially those of high hardness (e.g ., high Ca2+, Mg2+, and CO32- concentrations), are a common worldwide problem. The complexation of alkali earth metals, carbonate, and uranium(VI) results in the formation of thermodynamically stable ternary aqueous species that are predominantly neutrally charged (e.g ., Ca2(UO2)(CO3)30). The removal of the uncharged (nonadsorbing) complexes is a problematic issue for many water treatment technologies. As such, we have evaluated the efficacy of a recently developed electrochemical technology, termed flow-electrode capacitive deionization (FCDI), to treat a synthetic groundwater, the composition of which is comparable to groundwater resources in the Northern Territory, Australia (and elsewhere worldwide). Theoretical calculations and time-resolved laser fluorescence spectroscopy analyses confirmed that Ca2(UO2)(CO3)30 was the primary aqueous species followed by Ca(UO2)(CO3)32- (at circumneutral pH values). Results under different operating conditions demonstrated that FCDI is versatile in reducing uranium concentrations to <10 µg L-1 with low electrical consumption (e.g ., ∼0.1 kWh m-3). It is concluded that the capability of FCDI to remove uranium under these common conditions depends on the dissociation kinetics of the Ca2(UO2)(CO3)30 complex in the electrical field. The subsequent formation of the negatively charged Ca(UO2)(CO3)32- species results in the efficient transport of uranium across the anion exchange membrane followed by immobilization on the positively charged flow (anode) electrode.


Assuntos
Água Subterrânea , Urânio , Adsorção , Austrália , Eletrodos
13.
J Environ Radioact ; 178-179: 377-384, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28687277

RESUMO

At many legacy radioactive waste sites, organic compounds have been co-disposed, which may be a factor in mobilisation of radionuclides at these sites. Tri-butyl phosphate (TBP) is a component of waste streams from the nuclear fuel cycle, where it has been used in separating actinides during processing of nuclear fuels. Analyses of ground waters from the Little Forest Legacy Site (LFLS) in eastern Australia were undertaken using solid-phase extraction (SPE) followed by gas chromatographic mass spectrometry (GCMS). The results indicate the presence of TBP several decades after waste disposal, with TBP only being detected in the immediate vicinity of the main disposal area. TBP is generally considered to degrade in the environment relatively rapidly. Therefore, it is likely that its presence is due to relatively recent releases of TBP, possibly stemming from leakage due to container degradation. The ongoing presence and solubility of TBP has the potential to provide a mechanism for nuclide mobilisation, with implications for long term management of LFLS and similar legacy waste sites.


Assuntos
Água Subterrânea/química , Organofosfatos/análise , Monitoramento de Radiação , Resíduos Radioativos/análise , Poluentes Radioativos da Água/análise , Austrália , Poluentes do Solo/análise
14.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28667104

RESUMO

During the 1960s, small quantities of radioactive materials were codisposed with chemical waste at the Little Forest Legacy Site (Sydney, Australia) in 3-meter-deep, unlined trenches. Chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess the impact of changing water levels upon the microbial ecology and contaminant mobility. Collectively, results demonstrated that oxygen-laden rainwater rapidly altered the redox balance in the trench water, strongly impacting microbial functioning as well as the radiochemistry. Two contaminants of concern, plutonium and americium, were shown to transition from solid-iron-associated species immediately after the initial rainwater pulse to progressively more soluble moieties as reducing conditions were enhanced. Functional metagenomics revealed the potentially important role that the taxonomically diverse microbial community played in this transition. In particular, aerobes dominated in the first day, followed by an increase of facultative anaerobes/denitrifiers at day 4. Toward the mid-end of the sampling period, the functional and taxonomic profiles depicted an anaerobic community distinguished by a higher representation of dissimilatory sulfate reduction and methanogenesis pathways. Our results have important implications to similar near-surface environmental systems in which redox cycling occurs.IMPORTANCE The role of chemical and microbiological factors in mediating the biogeochemistry of groundwaters from trenches used to dispose of radioactive materials during the 1960s is examined in this study. Specifically, chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess how changing water levels influence microbial ecology and contaminant mobility. Results demonstrate that oxygen-laden rainwater rapidly altered the redox balance in the trench water, strongly impacting microbial functioning as well as the radiochemistry. Two contaminants of concern, plutonium and americium, were shown to transition from solid-iron-associated species immediately after the initial rainwater pulse to progressively more soluble moieties as reducing conditions were enhanced. Functional metagenomics revealed the important role that the taxonomically diverse microbial community played in this transition. Our results have important implications to similar near-surface environmental systems in which redox cycling occurs.


Assuntos
Bactérias/isolamento & purificação , Água Subterrânea/microbiologia , Resíduos Radioativos/análise , Austrália , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Meio Ambiente , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Metagenômica , Filogenia , Microbiologia da Água
15.
Environ Sci Technol ; 50(21): 11663-11671, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27704793

RESUMO

Increasing concentrations of dissolved silicate progressively retard Fe(II) oxidation kinetics in the circum-neutral pH range 6.0-7.0. As Si:Fe molar ratios increase from 0 to 2, the primary Fe(III) oxidation product transitions from lepidocrocite to a ferrihydrite/silica-ferrihydrite composite. Empirical results, supported by chemical kinetic modeling, indicated that the decreased heterogeneous oxidation rate was not due to differences in absolute Fe(II) sorption between the two solids types or competition for adsorption sites in the presence of silicate. Rather, competitive desorption experiments suggest Fe(II) was associated with more weakly bound, outer-sphere complexes on silica-ferrihydrite compared to lepidocrocite. A reduction in extent of inner-sphere Fe(II) complexation on silica-ferrihydrite confers a decreased ability for Fe(II) to undergo surface-induced hydrolysis via electronic configuration alterations, thereby inhibiting the heterogeneous Fe(II) oxidation mechanism. Water samples from a legacy radioactive waste site (Little Forest, Australia) were shown to exhibit a similar pattern of Fe(II) oxidation retardation derived from elevated silicate concentrations. These findings have important implications for contaminant migration at this site as well as a variety of other groundwater/high silicate containing natural and engineered sites that might undergo iron redox fluctuations.


Assuntos
Compostos Férricos/química , Compostos Ferrosos , Ferro/química , Oxirredução , Silicatos/química
16.
J Hazard Mater ; 320: 143-149, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27529649

RESUMO

Recent studies have demonstrated that the rate at which Fe(II)-Fe(III) oxyhydroxide systems catalyze the reduction of reducible contaminants, such as 4-chloronitrobenzene, is well correlated to their thermodynamic reduction potential. Here we confirm this effect in the presence of Fe(III) oxyhydroxide phases not previously assessed, namely ferrihydrite and nano-goethite, as well as Fe(III) oxyhydroxide phases previously examined. In addition, silicate is found to decrease the extent of Fe(II) sorption to the Fe(III) oxyhydroxide surface, increasing the reduction potential of the Fe(II)-Fe(III) oxyhydroxide suspension and, accordingly, decreasing the rate of 4-chloronitrobenzene reduction. A linear relationship between the reduction potential of the Fe(II)-Fe(III) oxyhydroxide suspensions and the reduction rate of 4-chloronitrobenzene (normalized to surface area and concentration of sorbed Fe(II)) was obtained in the presence and absence of silicate. However, when ferrihydrite was doped with Si (through co-precipitation) the reduction of 4-chloronitrobenzene was much slower than predicted from its reduction potential. The results obtained have significant implications to the likely effectiveness of naturally occurring contaminant degradation processes involving Fe(II) and Fe(III) oxyhydroxides in groundwater environments containing high concentrations of silicate, or other species which compete with Fe(II) for sorption sites.

17.
Sci Total Environ ; 547: 104-113, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26780135

RESUMO

Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values<3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with (55)Fe and (26)Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (>70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported.


Assuntos
Monitoramento Ambiental , Metais/análise , Poluentes do Solo/análise , Solo/química , Austrália , Movimentos da Água
18.
ISME J ; 10(6): 1337-51, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26636552

RESUMO

The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012-2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including Microcystis, Dolichospermum, Oscillatoria and Sphaerospermopsis. Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems.


Assuntos
Bactérias/crescimento & desenvolvimento , Biodiversidade , Cianobactérias/crescimento & desenvolvimento , Consórcios Microbianos , Plâncton/classificação , Austrália , Bactérias/classificação , Bactérias/genética , Mudança Climática , Cianobactérias/classificação , Cianobactérias/genética , Eutrofização , Água Doce/microbiologia , Lagos/microbiologia , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Estações do Ano , Especificidade da Espécie , Microbiologia da Água
19.
Environ Sci Technol ; 49(14): 8487-96, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26106944

RESUMO

The uptake and binding of uranium [as (UO2)(2+)] by a moderately acidophilic fungus, Coniochaeta fodinicola, recently isolated from a uranium mine site, is examined in this work in order to better understand the potential impact of organisms such as this on uranium sequestration in hydrometallurgical systems. Our results show that the viability of the fungal biomass is critical to their capacity to remove uranium from solution. Indeed, live biomass (viable cells based on vital staining) were capable of removing ∼16 mg U/g dry weight in contrast with dead biomass (autoclaved) which removed ∼45 mg U/g dry weight after 2 h. Furthermore, the uranium binds with different strength, with a fraction ranging from ∼20-50% being easily leached from the exposed biomass by a 10 min acid wash. Results from X-ray absorption spectroscopy measurements show that the strength of uranium binding is strongly influenced by cell viability, with live cells showing a more well-ordered uranium bonding environment, while the distance to carbon or phosphorus second neighbors is similar in all samples. When coupled with time-resolved laser fluorescence and Fourier transformed infrared measurements, the importance of organic acids, phosphates, and polysaccharides, likely released with fungal cell death, appear to be the primary determinants of uranium binding in this system. These results provide an important progression to our understanding with regard to uranium sequestration in hydrometallurgical applications with implications to the unwanted retention of uranium in biofilms and/or its mobility in a remediation context.


Assuntos
Ascomicetos/metabolismo , Urânio/farmacocinética , Ascomicetos/efeitos dos fármacos , Biomassa , Polissacarídeos Fúngicos/metabolismo , Fosfatos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Urânio/metabolismo , Poluentes Químicos da Água/farmacocinética , Espectroscopia por Absorção de Raios X
20.
Mycologia ; 106(6): 1073-89, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25143478

RESUMO

Seven acidophilic/acidotolerant fungal strains were characterized from samples of process waters (raffinate) at one of Australia's largest uranium mines, the Ranger Mine in Northern Territory. They were isolated from raffinate, which typically were very acidic (pH 1.7-1.8) and contained high concentrations of total dissolved/colloidal salts (> 100 g/L). Five of the isolates correspond to two new acidotolerant Ascomycota fungi. The first is a member of a new genus, here described as Fodinomyces (Teratosphaeriaceae, Capnodiales, Dothideomycetes) and does not show clear close affiliation with any other described fungus in the scientific literature. The second belongs to the genus Coniochaeta (Coniochaetaceae, Coniochaetales, Sordariomycetes) and is closely related to Coniochaeta hansenii.


Assuntos
Ascomicetos/classificação , Ascomicetos/citologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Austrália , Sequência de Bases , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Mineração , Dados de Sequência Molecular , Micélio , Filogenia , Análise de Sequência de DNA , Esporos Fúngicos , Urânio , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...