Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(11)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33688049

RESUMO

A liquid-liquid transition (LLT) is a transformation from one liquid to another through a first-order transition. The LLT is fundamental to the understanding of the liquid state and has been reported in a few materials such as silicon, phosphorus, triphenyl phosphite, and water. Furthermore, it has been suggested that the unique properties of materials such as water, which is critical for life on the planet, are linked to the existence of the LLT. However, the experimental evidence for the existence of an LLT in many molecular liquids remains controversial, due to the prevalence and high propensity of the materials to crystallize. Here, we show evidence of an LLT in a glass-forming trihexyltetradecylphosphonium borohydride ionic liquid that shows no tendency to crystallize under normal laboratory conditions. We observe a step-like increase in the static dielectric permittivity at the transition. Furthermore, the sizes of nonpolar local domains and ion-coordination numbers deduced from wide-angle X-ray scattering also change abruptly at the LLT. We independently corroborate these changes in local organization using Raman spectroscopy. The experimental access to the evolution of local order and structural dynamics across a liquid-liquid transition opens up unprecedented possibilities to understand the nature of the liquid state.

2.
Front Cell Infect Microbiol ; 11: 637019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718284

RESUMO

Vibrio vulnificus is a deadly human pathogen for which infections occur via seafood consumption (foodborne) or direct contact with wounds. Virulence is not fully characterized for this organism; however, there is evidence of biochemical and genotypic correlations with virulence potential. In this study, biochemical profiles and virulence genotype, based on 16S rRNA gene (rrn) and virulence correlated gene (vcg) types, were determined for 30 clinical and 39 oyster isolates. Oyster isolates were more biochemically diverse than the clinical isolates, with four of the 20 tests producing variable (defined as 20-80% of isolates) results. Whereas, for clinical isolates only mannitol fermentation, which has previously been associated with virulence potential, varied among the isolates. Nearly half (43%) of clinical isolates were the more virulent genotype (rrnB/vcgC); this trend was consistent when only looking at clinical isolates from blood. The majority (64%) of oyster isolates were the less virulent genotype (rrnA or AB/vcgE). These data were used to select a sub-set of 27 isolates for virulence testing with a subcutaneously inoculated, iron-dextran treated mouse model. Based on the mouse model data, 11 isolates were non-lethal, whereas 16 isolates were lethal, indicating a potential for human infection. Within the non-lethal group there were eight oyster and three clinical isolates. Six of the non-lethal isolates were the less virulent genotype (rrnA/vcgE or rrnAB/vcgE) and two were rrnB/vcgC with the remaining two of mixed genotype (rrnAB/vcgC and rrnB/vcgE). Of the lethal isolates, five were oysters and 11 were clinical. Eight of the lethal isolates were the less virulent genotype and seven the more virulent genotype, with the remaining isolate a mixed genotype (rrnA/vcgC). A discordance between virulence genotype and individual mouse virulence parameters (liver infection, skin infection, skin lesion score, and body temperature) was observed; the variable most strongly associated with mouse virulence parameters was season (warm or cold conditions at time of strain isolation), with more virulent strains isolated from cold conditions. These results indicate that biochemical profiles and genotype are not significantly associated with virulence potential, as determined by a mouse model. However, a relationship with virulence potential and seasonality was observed.


Assuntos
Ostreidae , Vibrioses , Vibrio vulnificus , Animais , Camundongos , RNA Ribossômico 16S , Vibrio vulnificus/genética , Virulência
3.
ACS Appl Mater Interfaces ; 12(39): 44325-44334, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32886472

RESUMO

Polymerized ionic liquids are a promising class of versatile solid-state electrolytes for applications ranging from electrochemical energy storage to flexible smart materials that remain limited by their relatively low ionic conductivities compared to conventional electrolytes. Here, we show that the in situ polymerization of the vinyl cationic monomer, 1-ethyl-3-vinylimidazolium with the bis(trifluoromethanesulfonyl)imide counteranion, under nanoconfinement within 7.5 ± 1.0 nm diameter nanopores results in a nearly 1000-fold enhancement in the ionic conductivity compared to the material polymerized in bulk. Using insights from broadband dielectric and Raman spectroscopic techniques, we attribute these results to the role of confinement on molecular conformations, ion coordination, and subsequently the ionic conductivity in the polymerized ionic liquid. These results contribute to the understanding of the dynamics of nanoconfined molecules and show that in situ polymerization under nanoscale geometric confinement is a promising path toward enhancing ion conductivity in polymer electrolytes.

4.
ACS Macro Lett ; 9(4): 565-570, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35648487

RESUMO

Lamellar block copolymers based on polymeric ionic liquids (PILs) show promise as electrolytes in electrochemical devices. However, these systems often display structural anisotropy that depresses the through-film ionic conductivity. This work hypothesizes that structural anisotropy is a consequence of surface-induced ordering, where preferential adsorption of one block at the electrode drives a short-range stacking of the lamellae. This point was examined with lamellar diblock copolymers of polystyrene (PS) and poly(1-(2-acryloyloxyethyl)-3-butylimidazolium bis(trifluoromethanesulfonyl)imide) (PIL). The bulk PS-PIL structure was comprised of randomly oriented lamellar grains. However, in thin PS-PIL films (100-400 nm), the lamellae were stacked normal to the plane of the film, and islands/holes were observed when the as-prepared film thickness was incommensurate with the natural lamellar periodicity. Both of these attributes are well-known consequences of preferential wetting at surfaces. The ionic conductivity of thick PS-PIL films (50-100 µm) was approximately 20× higher in the in-plane direction than in the through-plane direction, consistent with a mixed structure comprised of randomly oriented lamellae throughout the interior of the film and highly oriented lamellae at the electrode surface. Therefore, to fully optimize the performance of a block copolymer electrolyte, it is important to consider the effects of surface interactions on the ordering of domains.

5.
Eur Phys J E Soft Matter ; 42(10): 137, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31650417

RESUMO

Broadband dielectric spectroscopy is employed to probe dynamics in low molecular weight poly(cis-1,4-isoprene) (PI) confined in unidirectional silica nanopores with mean pore diameter, D, of 6.5 nm. Three molecular weights of PI (3, 7 and 10 kg/mol) were chosen such that the ratio of D to the polymer radius of gyration, Rg, is varied from 3.4, 2.3 to 1.9, respectively. It is found that the mean segmental relaxation rate remains bulk-like but an additional process arises at lower frequencies with increasing molecular weight (decreasing D/Rg. In contrast, the mean relaxation rates of the end-to-end dipole vector corresponding to chain dynamics are found to be slightly slower than that in the bulk for the systems approaching D/Rg ∼ 2, but faster than the bulk for the polymer with the largest molecular weight. The analysis of the spectral shapes of the chain relaxation suggests that the resulting dynamics of the 10kg/mol PI confined at length-scales close to that of the Rg are due to non-ideal chain conformations under confinement decreasing the chain relaxation times. The understanding of these faster chain dynamics of polymers under extreme geometrical confinement is necessary in designing nanodevices that contain polymeric materials within substrates approaching the molecular scale.

6.
J Food Prot ; 78(8): 1574-80, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26219373

RESUMO

Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are the two leading causes of bacterial illnesses associated with raw shellfish consumption. Levels of these pathogens in oysters can increase during routine antifouling aquaculture practices involving dry storage in ambient air conditions. After storage, common practice is to resubmerge these stored oysters to reduce elevated Vv and Vp levels, but evidence proving the effectiveness of this practice is lacking. This study examined the changes in Vv and in total and pathogenic (thermostable direct hemolysin gene and the tdh-related hemolysin gene, tdh+ and trh+) Vp levels in oysters after 5 or 24 h of dry storage (28 to 32°C), followed by resubmersion (27 to 32°C) for 14 days. For each trial, replicate oyster samples were collected at initial harvest, after dry storage, after 7 days, and after 14 days of resubmersion. Oysters not subjected to dry storage were collected and analyzed to determine natural undisturbed vibrio levels (background control). Vibrio levels were measured using a most-probable-number enrichment followed by real-time PCR. After storage, vibrio levels (excluding tdh+ and trh+ Vp during 5-h storage) increased significantly (P < 0.001) from initial levels. After 7 days of resubmersion, Vv and total Vp levels (excluding total Vp in oysters stored for 5 h) were not significantly different (P < 0.1) from levels in background oysters. Vv and total and pathogenic Vp levels were not significantly different (P > 0.1) from levels in background oysters after 14 days of resubmersion, regardless of dry storage time. These data demonstrate that oyster resubmersion after dry storage at elevated ambient temperatures allows vibrio levels to return to those of background control samples. These results can be used to help minimize the risk of Vv and Vp illnesses and to inform the oyster industry on the effectiveness of routine storing and resubmerging of aquaculture oysters.


Assuntos
Armazenamento de Alimentos/métodos , Ostreidae/microbiologia , Frutos do Mar/microbiologia , Vibrio parahaemolyticus/isolamento & purificação , Vibrio vulnificus/isolamento & purificação , Animais , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio vulnificus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...