Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 112(5): 1593-1608, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31498933

RESUMO

Obg is a versatile GTPase that plays a pivotal role in bacterial persistence. We previously showed that the Escherichia coli homolog ObgE exerts this activity through transcriptional activation of a toxin-antitoxin module and subsequent membrane depolarization. Here, we assessed the role of G-domain functionality in ObgE-mediated persistence. Through screening of a mutant library, we identified five obgE alleles (with substitutions G166V, D246G, S270I, N283I and I313N) that have lost their persistence function and no longer activate hokB expression. These alleles support viability of a strain otherwise deprived of ObgE, indicating that ObgE's persistence function can be uncoupled from its essential role. Based on the ObgE crystal structure, we designed two additional mutant proteins (T193A and D286Y), one of which (D286Y) no longer affects persistence. Using isothermal titration calorimetry, stopped-flow experiments and kinetics, we subsequently assessed nucleotide binding and GTPase activity in all mutants. With the exception of the S270I mutant that is possibly affected in protein-protein interactions, all mutants that have lost their persistence function display severely reduced binding to GDP or the alarmone ppGpp. However, we find no clear relation between persistence and GTP or pppGpp binding nor with GTP hydrolysis. Combined, our results signify an important step toward understanding biochemical determinants underlying persistence.


Assuntos
Toxinas Bacterianas/biossíntese , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Relação Estrutura-Atividade , Ativação Transcricional/genética
2.
mBio ; 6(6): e01935-15, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26695632

RESUMO

UNLABELLED: Programmed cell death (PCD) is an important hallmark of multicellular organisms. Cells self-destruct through a regulated series of events for the benefit of the organism as a whole. The existence of PCD in bacteria has long been controversial due to the widely held belief that only multicellular organisms would profit from this kind of altruistic behavior at the cellular level. However, over the past decade, compelling experimental evidence has established the existence of such pathways in bacteria. Here, we report that expression of a mutant isoform of the essential GTPase ObgE causes rapid loss of viability in Escherichia coli. The physiological changes that occur upon expression of this mutant protein--including loss of membrane potential, chromosome condensation and fragmentation, exposure of phosphatidylserine on the cell surface, and membrane blebbing--point to a PCD mechanism. Importantly, key regulators and executioners of known bacterial PCD pathways were shown not to influence this cell death program. Collectively, our results suggest that the cell death pathway described in this work constitutes a new mode of bacterial PCD. IMPORTANCE: Programmed cell death (PCD) is a well-known phenomenon in higher eukaryotes. In these organisms, PCD is essential for embryonic development--for example, the disappearance of the interdigital web--and also functions in tissue homeostasis and elimination of pathogen-invaded cells. The existence of PCD mechanisms in unicellular organisms like bacteria, on the other hand, has only recently begun to be recognized. We here demonstrate the existence of a bacterial PCD pathway that induces characteristics that are strikingly reminiscent of eukaryotic apoptosis, such as fragmentation of DNA, exposure of phosphatidylserine on the cell surface, and membrane blebbing. Our results can provide more insight into the mechanism and evolution of PCD pathways in higher eukaryotes. More importantly, especially in the light of the looming antibiotic crisis, they may point to a bacterial Achilles' heel and can inspire innovative ways of combating bacterial infections, directed at the targeted activation of PCD pathways.


Assuntos
Substituição de Aminoácidos , Apoptose , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fragmentação do DNA , Escherichia coli/genética , Potenciais da Membrana , Viabilidade Microbiana , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfatidilserinas/análise
3.
Mol Cell ; 59(1): 9-21, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26051177

RESUMO

Within bacterial populations, a small fraction of persister cells is transiently capable of surviving exposure to lethal doses of antibiotics. As a bet-hedging strategy, persistence levels are determined both by stochastic induction and by environmental stimuli called responsive diversification. Little is known about the mechanisms that link the low frequency of persisters to environmental signals. Our results support a central role for the conserved GTPase Obg in determining persistence in Escherichia coli in response to nutrient starvation. Obg-mediated persistence requires the stringent response alarmone (p)ppGpp and proceeds through transcriptional control of the hokB-sokB type I toxin-antitoxin module. In individual cells, increased Obg levels induce HokB expression, which in turn results in a collapse of the membrane potential, leading to dormancy. Obg also controls persistence in Pseudomonas aeruginosa and thus constitutes a conserved regulator of antibiotic tolerance. Combined, our findings signify an important step toward unraveling shared genetic mechanisms underlying persistence.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/biossíntese , Farmacorresistência Bacteriana/fisiologia , Proteínas de Escherichia coli/biossíntese , Escherichia coli/genética , Proteínas de Ligação ao GTP/genética , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Membrana Celular/fisiologia , Proteínas de Escherichia coli/genética , Potenciais da Membrana/genética , Testes de Sensibilidade Microbiana , Estrutura Terciária de Proteína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...