Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 2718-2731, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297794

RESUMO

Microsphere photolithography (MPL) is a promising technique for cost-effective fabrication of large-scale metasurfaces. This approach generates an array of photonic jets by the collimated illumination of self-assembled microspheres. The photonic jets can be precisely steered within the unit cell defined by each microsphere by changing the angle of incidence. This allows for the creation of complex metasurface element geometries. Computer controlled articulation of the substrate relative to a static UV source allows the direct-write of different metasurface elements. However, this is time-consuming and requires registration between each exposure for complex features. This paper investigates a single exposure method with the dynamic continuous angle of incidence control provided by a Digital Micromirror Device (DMD) in the front Fourier plane of the projection system. The grayscale values of the DMD pixels can be adjusted to provide optical proximity correction. Larger patterns can be achieved by scanning the substrate relative to the exposure beam. This approach is demonstrated with the creation of hierarchical patterns. This work greatly simplifies the MPL exposure process for complex resonators and provides potential for full light field control.

2.
Appl Opt ; 60(24): 7122-7130, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612997

RESUMO

A direct-write configuration of microsphere photolithography (MPL) is investigated for the patterning of IR metasurfaces at large scales. MPL uses a self-assembled hexagonal close-packed array of microspheres as an optical element to generate photonic nanojets within a photoresist layer. The photonic jets can be positioned within the microsphere-defined unit cells by controlling the illumination's angle of incidence (AOI). This allows the definition of complex antenna elements. A digital micromirror device is used to provide spatial modulation across the microsphere arrays and coordinated with a set of stages providing AOI control. This provides hierarchical patterning at the sub- and super-unit cell levels and is suitable for a range of metasurfaces. The constraints of this approach are analyzed and demonstrated with a polarization-dependent infrared perfect absorber/emitter, which agrees well with modeling.

3.
Sci Rep ; 11(1): 10959, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040081

RESUMO

Recoil pressure is a critical factor affecting the melt pool dynamics during Laser Powder Bed Fusion (LPBF) processes. Recoil pressure depresses the melt pool. When the recoil pressure is low, thermal conduction and capillary forces may be inadequate to provide proper fusion between layers. However, excessive recoil pressure can produce a keyhole inside the melt pool, which is associated with gas porosity. Direct recoil pressure measurements are challenging because it is localized over an area proportionate to the laser spot size producing a force in the mN range. This paper reports a vibration-based approach to quantify the recoil force exerted on a part in a commercial LPBF machine. The measured recoil force is consistent with estimates from high speed synchrotron imaging of entrained particles, and the results show that the recoil force scales with applied laser power and is inversely related to the laser scan speed. These results facilitate further studies of melt pool dynamics and have the potential to aid process development for new materials.

4.
Nano Lett ; 21(7): 2919-2925, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33764074

RESUMO

Symmetry-breaking synthetic controls allow for nanostructure geometries that are counter to the underlying crystal symmetry of a material. If suitably applied, such controls provide the means to drive an isotropic metal along a growth pathway yielding a three-dimensional chiral geometry. Herein, we present a light-driven solution-based synthesis yielding helical gold spirals from substrate-bound seeds. The devised growth mode relies on three separate symmetry-breaking events ushered in by seeds lined with planar defects, a capping agent that severely frustrates early stage growth, and the Coulombic repulsion that occurs when identically charged growth fronts collide. Together they combine to advance a growth pathway in which planar growth emanates from one side of the seed, advances to encircle the seed from both clockwise and counterclockwise directions, and then, upon collision of the two growth fronts, sees one front rise above the other to realize a self-perpetuating three-dimensional spiral structure.

5.
RSC Adv ; 11(42): 25912-25920, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35479472

RESUMO

Microsphere photolithography (MPL) using off-axis UV exposure is a technique that uses a layer of self-assembled microspheres as an optical mask to project different periodic nanopatterns. This paper introduces MPL as an alternative fabrication technique to pattern complex metasurfaces on an optical single mode fiber tip as a sensor for measuring refractive index. Based on the hexagonal close packing microsphere array, complicated metasurfaces were successfully created by changing the UV illumination angle. Using the same self-assembled microspheres monolayer, multiple UV illumination jets were projected to create multiple hole group patterns. Fiber sensors with three-hole group and four-hole group patterns were fabricated and tested with different glucose concentrations in water. The different concentration solutions have various refractive indexes, which result in the shift of the metasurface resonant wavelength, represented as sensitivity. The testing results show that the three-hole group and four-hole group have the sensitivity of 906 nm per RIU and 675 nm per RIU, respectively. Finite element analysis was used to model the fiber sensor's surrounding with different refractive index solutions. These new pattern metasurface coated fibers' refractive index sensitivity has increased by 40% compared to our previous work, while the technique still provides a cost-effective, flexible, high-throughput fabrication of the fiber sensor.

6.
Opt Express ; 28(26): 39700-39712, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379514

RESUMO

Microsphere photolithography (MPL) is a fabrication technique that combines the ability to self-assemble arrays of microspheres with the ability of a microsphere to focus light to a photonic jet, in order to create highly ordered nanoscale features in photoresist. This paper presents a model of photoresist exposure with the photonic jet, combining a full-wave electromagnetic model of the microsphere/photoresist interaction with the sequential removal of exposed photoresist by the developer. The model is used to predict the dose curves for the MPL process based on the photoresist thickness, illumination conditions, and development time. After experimental validation, the model provides insight into the process including the resolution, sensitivity, and effects of off-normal illumination. This guides the fabrication of sub-100 nm hole/disk arrays using lift-off, and superposition is shown to predict the geometry for split-ring resonators created using multiple exposures. This model will assist synthesizing fabrication parameters to create large area scalable metasurfaces with sensing and energy management applications.

7.
Sci Rep ; 10(1): 13429, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778703

RESUMO

We investigate the generation of electrical signals by suspended thermoelectrically coupled nanoantennas (TECNAs) above a quasi-spherical reflector cavity in response to rapidly changing long-wave infrared radiation. These sensors use a resonant nanoantenna to couple the IR energy to a nanoscale thermocouple. They are positioned over a cavity, etched into the Si substrate, that provides thermal isolation and is designed as an optical element to focus the IR radiation to the antenna. We study the frequency-dependent response of such TECNAs to amplitude-modulated 10.6 µm IR signals. We experimentally demonstrate response times on the order of 3 µs, and a signal bandwidth of about 300 kHz. The observed electrical response is in excellent correlation with finite element method simulations based on the thermal properties of nanostructures. Both experiments and simulations show a key trade-off between sensitivity and response time for such structures and provide solutions for specific target applications.

8.
Nanotechnology ; 30(42): 425303, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31328721

RESUMO

In this article, we demonstrate a specially designed resonant metamaterial with epsilon-near-zero (ENZ) and nanoantenna to enhance the exposure depth in plasmonic direct writing lithography more than 10 times. The ENZ metamaterial composed of a Ag/Si3N4 multilayer thin film, converts the evanescent field generated by the bowtie aperture nanoantenna to propagating waves with low divergence and high collimation. Deep sub-diffraction limited resolution of less than 65 nm (λ/7) with exposure depth greater than 100 nm is achieved. This work brings plasmonic direct writing lithography one step closer to practical applications.

9.
Opt Express ; 25(11): 12632-12639, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28786618

RESUMO

Fabricating metasurfaces over large areas at low costs remains a critical challenge to their practical implementation. This paper reports on the use of microsphere photolithography (MPL) to create infrared metasurfaces by changing the angle-of-incidence of the illumination to steer the photonic jet. The displacement of the photonic jet is shown to scale with the diameter of the microsphere while the exposure dose scales with the square of the microsphere diameter. This process is robust in the presence of local defects in the microsphere lattice. The paper demonstrates patterning split ring resonators and tripole based metasurfaces using MPL, which are fabricated and characterized with FTIR. The combination of bottom-up and top-down approaches in off-normal incidence microsphere photolithography technique provides cost-effective, flexible, and high-throughput fabrication of infrared metasurfaces.

10.
Appl Opt ; 56(4): 1037-1045, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158110

RESUMO

When considering the pseudo-heterodyne mode for detection of the modulus and phase of the near field from scattering scanning near-field optical microscopy (s-SNOM) measurements, processing only the modulus of the signal may produce an undesired constraint in the accessible values of the phase of the near field. A two-dimensional analysis of the signal provided by the data acquisition system makes it possible to obtain phase maps over the whole [0, 2π) range. This requires post-processing of the data to select the best coordinate system in which to represent the data along the direction of maximum variance. The analysis also provides a quantitative parameter describing how much of the total variance is included within the component selected for calculation of the modulus and phase of the near field. The dependence of the pseudo-heterodyne phase on the mean position of the reference mirror is analyzed, and the evolution of the global phase is extracted from the s-SNOM data. The results obtained from this technique compared well with the expected maps of the near-field phase obtained from simulations.

11.
Opt Lett ; 41(15): 3399-402, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472578

RESUMO

Microsphere photolithography (MPL) is a practical, cost-effective nanofabrication technique. It uses self-assembled microspheres in contact with the photoresist as microlenses. The microspheres focus incident light to a sub-diffraction limited array of photonic jets in the photoresist. This Letter explores the MPL technique to pattern metal-insulator-metal metasurfaces with near-perfect absorption at mid-wave infrared (MWIR) frequencies. Experimental results are compared to electromagnetic simulations of both the exposure process and the metasurface response. The microsphere self-assembly technique results in a polycrystalline metasurface; however, the metal-insulator-metal structure is shown to be defect tolerant. While the MPL approach imposes geometric constraints on the metasurface design, once understood, the technique can be used to create functional devices. In particular, the ability to tune the resonant wavelength with the exposure dose raises the potential of hierarchical structures.

12.
Sci Rep ; 6: 27254, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250995

RESUMO

Nanoscale bowtie aperture antennas can be used to focus light well below the diffraction limit with extremely high transmission efficiencies. This paper studies the spectral dependence of the transmission through nanoscale bowtie apertures defined in a silver film. A realistic bowtie aperture is numerically modeled using the Finite Difference Time Domain (FDTD) method. Results show that the transmission spectrum is dominated by Fabry-Pérot (F-P) waveguide modes and plasmonic modes. The F-P resonance is sensitive to the thickness of the film and the plasmonic resonant mode is closely related to the gap distance of the bowtie aperture. Both characteristics significantly affect the transmission spectrum. To verify these numerical results, bowtie apertures are FIB milled in a silver film. Experimental transmission measurements agree with simulation data. Based on this result, nanoscale bowtie apertures can be optimized to realize deep sub-wavelength confinement with high transmission efficiency with applications to nanolithography, data storage, and bio-chemical sensing.

13.
Opt Express ; 22(3): 2965-72, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663588

RESUMO

Scattering near-field scanning optical microscopy (s-NSOM) has been developed to characterize optical near field with spatial resolution on the order of 10 nm. In this work we report investigation of the interferometric patterns commonly occurred in s-NSOM measurements. To reveal the origin of such interference patterns, a simple nanoslit is used. Comparing the measured result with a simplified analytical model as well as full-field numerical simulations, it is shown that the interference pattern is predominantly formed by the in-plane component of incidence light and surface plasmon polariton (SPP) launched by the nanoslit. This result helps to understand the responses of plasmonic nanostructures during s-NSOM measurements.


Assuntos
Interferometria/instrumentação , Lentes , Nanotecnologia/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
14.
Opt Express ; 20(11): 11986-93, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22714184

RESUMO

Frequency-selective surfaces (FSS) are a class of metasurfaces with engineered reflectance, absorbance, and transmittance behavior. We study an array of metallic crossed dipole FSS elements in the infrared using interferometric scattering-type scanning near-field optical microscopy (s-SNOM). We resolve the dependence of the near-field phase on the dimensions of the elements and compare with numerical models. The combined phase and amplitude information of the underlying near-field mode distribution compared to conventional far-field absorption spectroscopy greatly improves the targeted design of frequency-selective surfaces.


Assuntos
Interferometria/instrumentação , Microscopia/instrumentação , Fotometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
15.
Appl Opt ; 50(31): G42-6, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22086046

RESUMO

Near-field transducer based on nanoscale optical antenna has been shown to generate high transmission and strongly localized optical spots well below the diffraction limit. In this paper, nanoscale ridge aperture antenna is considered as near-field transducer for heat-assisted magnetic recording. The spot size and transmission efficiency produced by ridge aperture are numerically studied. We show that the ridge apertures in a bowtie or half-bowtie shape are capable of generating small optical spots as well as elongated optical spots with desired aspect ratios for magnetic recording. The transmission efficiency can be improved by adding grooves around the apertures.

16.
Opt Lett ; 36(15): 2764-6, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21808305

RESUMO

Nanoscale bowtie antenna and bowtie aperture antenna have been shown to generate strongly enhanced and localized electric fields below the diffraction limit in the optical frequency range. According to Babinet's principle, their complements will be efficient for concentrating and enhancing magnetic fields. In this Letter, we discuss the enhancement of magnetic field intensity of nanoscale complementary bowtie aperture as well as complementary bowtie aperture antenna, or diabolo nanoantenna. We show that the complementary bowtie antenna resonates at a smaller wavelength and thus is more suitable for applications near visible wavelengths. The near-field magnetic intensity can be further enhanced by the addition of groove structures that scatter surface plasmon.

17.
Opt Express ; 18(5): 4961-71, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20389507

RESUMO

Ridge nanoscale aperture antennas have been shown to be a high transmission nanoscale light source. They provide a small, polarization-dependent near-field optical spot with much higher transmission efficiency than circularly-shaped apertures with similar field confinement. This provides significant motivations to understand the electromagnetic fields in the immediate proximity to the apertures. This paper describes an experimental three-dimensional optical near-field mapping of a bowtie nano-aperture. The measurements are performed using a home-built near-field scanning optical microscopy (NSOM) system. An aluminum coated Si(3)N(4) probe with a 150 nm hole at the tip is used to collect optical signals. Both contact and constant-height scan (CHS) modes are used to measure the optical intensity at different longitudinal distances. A force-displacement curve is used to determine the tip-sample separation distance allowing the optical intensities to be mapped at distances as small as 50 nm and up to micrometer level. The experimental results also demonstrate the polarization dependence of the transmission through the bowtie aperture. Numerical simulations are also performed to compute the aperture's electromagnetic near-field distribution and are shown to agree with the experimental results.

18.
Opt Express ; 18(7): 7369-75, 2010 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-20389758

RESUMO

We report results of parallel optical nanolithography using nanoscale bowtie aperture array. These nanoscale bowtie aperture arrays are used to focus a laser beam into multiple nanoscale light spots for parallel nano-lithography. Our work employed a frequency-tripled diode-pumped solid state (DPSS) laser (lambda = 355 nm) and Shipley S1805 photoresist. An interference-based optical alignment system was employed to position the bowtie aperture arrays with the photoresist surface. Nanoscale direct-writing of sub-100nm features in photoresist in parallel is demonstrated.


Assuntos
Nanotecnologia/métodos , Óptica e Fotônica , Algoritmos , Alumínio/química , Desenho de Equipamento , Luz , Modelos Estatísticos , Nanoestruturas , Fotoquímica/métodos
19.
Opt Lett ; 35(7): 992-4, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20364194

RESUMO

The discovery of extraordinary transmission through periodic aperture arrays has generated significant interest. Most studies have used circular apertures and attributed enhanced transmission to surface plasmon polariton (SPP) resonances and/or Rayleigh-Wood anomalies (RWA). Bowtie apertures concentrate light and have much longer cutoff wavelengths than circular apertures and can be designed to be strongly resonant. We demonstrate here that the total transmission through a bowtie aperture array can exceed 85% (4x the open area). Furthermore, we show that the high transmission is due to waveguide modes as opposed to the commonly believed SPP/RW phenomena. This work is focused on IR wavelengths near 9 microm; however, the results are broadly applicable and can be extended to optical frequencies.

20.
Opt Express ; 17(10): 8036-45, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19434135

RESUMO

In recent years, many nanophotonic devices have been developed. Much attention has been given to the waveguides carrying surface plasmon polariton modes with subwavelength confinement and long propagation length. However, coupling far field light into a nano structure is a significant challenge. In this work, we present an architecture that enables high efficiency excitation of nanoscale waveguides in the direction normal to the waveguide. Our approach employs a bowtie aperture to provide both field confinement and high transmission efficiency. More than six times the power incident on the open area of the bowtie aperture can be coupled into the waveguide. The intensity in the waveguide can be more than twenty times higher than that of the incident light, with mode localization better than lambda(2)/250. The vertical excitation of waveguide allows easy integration. The bowtie aperture/waveguide architecture presented in this work will open up numerous possibilities for the development of nanoscale optical systems for applications ranging from localized chemical sensing to compact communication devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...