Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geochem Geophys Geosyst ; 21(6): e2019GC008861, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32714099

RESUMO

Understanding the impact of earthquakes on subaqueous environments is key for submarine paleoseismological investigations seeking to provide long-term records of past earthquakes. For this purpose, event deposits (e.g., turbidites) are, among others, identified and stratigraphically correlated over broad areas to test for synchronous occurrence of gravity flows. Hence, detailed spatiotemporal petrographic and geochemical fingerprints of such deposits are required to advance the knowledge about sediment source and the underlying remobilization processes induced by past earthquakes. In this study, we develop for the first time in paleoseismology a multivariate statistical approach using X-ray fluorescence core scanning, magnetic susceptibility, and wet bulk density data that allow to test, confirm, and enhance the previous visual and lithostratigraphic correlation across two isolated basins in the central Japan Trench. The statistical correlation is further confirmed by petrographic heavy grain analysis of the turbidites and additionally combined with our novel erosion model based on previously reported bulk organic carbon 14C dates. We find surficial sediment remobilization, a process whereby strong seismic shaking remobilizes the uppermost few centimeters of surficial slope sediment, to be a predominant remobilization process, which partly initiates deeper sediment remobilization downslope during strong earthquakes at the Japan Trench. These findings shed new light on source-to-sink transport processes in hadal trenches during earthquakes and help to assess the completeness of the turbidite paleoseismic record. Our results further suggest that shallow-buried tephra on the slope might significantly influence sediment remobilization and the geochemical and petrographic fingerprints of the resulting event deposits.

2.
Sci Rep ; 9(1): 1553, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733607

RESUMO

The giant 2011 Tohoku-oki earthquake has been inferred to remobilise fine-grained, young surface sediment enriched in organic matter from the slope into the >7 km deep Japan Trench. Yet, this hypothesis and assessment of its significance for the carbon cycle has been hindered by limited data density and resolution in the hadal zone. Here we combine new high-resolution bathymetry data with sub-bottom profiler images and sediment cores taken during 2012-2016 in order to map for the first time the spatial extent of the earthquake-triggered event deposit along the hadal Japan Trench. We quantify a sediment volume of ~0.2 km3 deposited from spatially-widespread remobilisation of young surficial seafloor slope sediments triggered by the 2011 earthquake and its aftershock sequence. The mapped volume and organic carbon content in sediment cores encompassing the 2011 event reveals that this single tectonic event delivered >1 Tg of organic carbon to the hadal trench. This carbon supply is comparable to high carbon fluxes described for other Earth system processes, shedding new light on the impact of large earthquakes on long-term carbon cycling in the deep-sea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...