Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15159, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956262

RESUMO

Two-dimensional (2D) graphene and graphene-related materials (GRMs) show great promise for future electronic devices. GRMs exhibit distinct properties under the influence of the substrate that serves as support through uneven compression/ elongation of GRMs surface atoms. Strain in GRM monolayers is the most common feature that alters the interatomic distances and band structure, providing a new degree of freedom that allows regulation of their electronic properties and introducing the field of straintronics. Having an all-optical and minimally invasive detection tool that rapidly probes strain in large areas of GRM monolayers, would be of great importance in the research and development of novel 2D devices. Here, we use Polarization-resolved Second Harmonic Generation (P-SHG) optical imaging to identify strain distribution, induced in a single layer of WS2 placed on a pre-patterned Si/SiO2 substrate with cylindrical wells. By fitting the P-SHG data pixel-by-pixel, we produce spatially resolved images of the crystal armchair direction. In regions where the WS2 monolayer conforms to the pattern topography, a distinct cross-shaped pattern is evident in the armchair image owing to strain. The presence of strain in these regions is independently confirmed using a combination of atomic force microscopy and Raman mapping.

2.
Sci Rep ; 10(1): 15697, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973224

RESUMO

Tailoring the photoluminescence (PL) properties in two-dimensional (2D) molybdenum disulfide (MoS2) crystals using external factors is critical for its use in valleytronic, nanophotonic and optoelectronic applications. Although significant effort has been devoted towards enhancing or manipulating the excitonic emission in MoS2 monolayers, the excitonic emission in few-layers MoS2 has been largely unexplored. Here, we put forward a novel nano-heterojunction system, prepared with a non-lithographic process, to enhance and control such emission. It is based on the incorporation of few-layers MoS2 into a plasmonic silver metaphosphate glass (AgPO3) matrix. It is shown that, apart from the enhancement of the emission of both A- and B-excitons, the B-excitonic emission dominates the PL intensity. In particular, we observe an almost six-fold enhancement of the B-exciton emission, compared to control MoS2 samples. This enhanced PL at room temperature is attributed to an enhanced exciton-plasmon coupling and it is supported by ultrafast time-resolved spectroscopy that reveals plasmon-enhanced electron transfer that takes place in Ag nanoparticles-MoS2 nanoheterojunctions. Our results provide a great avenue to tailor the emission properties of few-layers MoS2, which could find application in emerging valleytronic devices working with B excitons.

3.
Sci Rep ; 9(1): 14285, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582759

RESUMO

Stacked atomically thin transition metal dichalcogenides (TMDs) exhibit fundamentally new physical properties compared to those of the individual layers. The twist angle between the layers plays a crucial role in tuning these properties. Having a tool that provides high-resolution, large area mapping of the twist angle, would be of great importance in the characterization of such 2D structures. Here we use polarization-resolved second harmonic generation (P-SHG) imaging microscopy to rapidly map the twist angle in large areas of overlapping WS2 stacked layers. The robustness of our methodology lies in the combination of both intensity and polarization measurements of SHG in the overlapping region. This allows the accurate measurement and consequent pixel-by-pixel mapping of the twist angle in this area. For the specific case of 30° twist angle, P-SHG enables imaging of individual layers.

4.
Light Sci Appl ; 7: 18005, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839517

RESUMO

We used nonlinear laser scanning optical microscopy to study atomically thin transition metal dichalcogenides (TMDs) and revealed, with unprecedented resolution, the orientational distribution of armchair directions and their degree of organization in the two-dimensional (2D) crystal lattice. In particular, we carried out polarization-resolved second-harmonic generation (PSHG) imaging for monolayer WS2 and obtained, with high-precision, the orientation of the main crystallographic axis (armchair orientation) for each individual 120 × 120 nm2 pixel of the 2D crystal area. Such nanoscale resolution was realized by fitting the experimental PSHG images, obtained with sub-micron precision, to a new generalized theoretical model that accounts for the nonlinear optical properties of TMDs. This enabled us to distinguish between different crystallographic domains, locate boundaries and reveal fine structure. As a consequence, we can calculate the mean orientational average of armchair angle distributions in specific regions of interest and define the corresponding standard deviation as a figure-of-merit for the 2D crystal quality.

5.
Nat Nanotechnol ; 12(8): 757-762, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28459469

RESUMO

Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition-metal dichalcogenide (TMDC) with a broken inversion symmetry possesses two degenerate yet inequivalent valleys, which offers unique opportunities for valley control through the helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest (∼0.2 meV T-1). Here we show greatly enhanced valley spitting in monolayer WSe2, utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magnetoreflectance measurements and corresponds to an effective exchange field of ∼12 T. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing the MEF of a magnetic insulator can induce magnetic order and valley and spin polarization in TMDCs, which may enable valleytronic and quantum-computing applications.

6.
Phys Rev Lett ; 96(19): 196101, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16803113

RESUMO

We combine Z-contrast scanning transmission electron microscopy with density-functional-theory calculations to determine the atomic structure of the interface in spin-polarized light-emitting diodes. A 44% increase in spin-injection efficiency occurs after a low-temperature anneal, which produces an ordered, coherent interface consisting of a single atomic plane of alternating Fe and As atoms. First-principles transport calculations indicate that the increase in spin-injection efficiency is due to the abruptness and coherency of the annealed interface.

7.
Nat Mater ; 3(11): 799-803, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15502834

RESUMO

The use of carrier spin in semiconductors is a promising route towards new device functionality and performance. Ferromagnetic semiconductors (FMSs) are promising materials in this effort. An n-type FMS that can be epitaxially grown on a common device substrate is especially attractive. Here, we report electrical injection of spin-polarized electrons from an n-type FMS, CdCr(2)Se(4), into an AlGaAs/GaAs-based light-emitting diode structure. An analysis of the electroluminescence polarization based on quantum selection rules provides a direct measure of the sign and magnitude of the injected electron spin polarization. The sign reflects minority rather than majority spin injection, consistent with our density-functional-theory calculations of the CdCr(2)Se(4) conduction-band edge. This approach confirms the exchange-split band structure and spin-polarized carrier population of an FMS, and demonstrates a litmus test for these FMS hallmarks that discriminates against spurious contributions from magnetic precipitates.


Assuntos
Compostos Férricos , Magnetismo , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...