Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071169

RESUMO

Polygodial is a "hot" peppery-tasting sesquiterpenoid that was first described for its anti-feedant activity against African armyworms. Using the haploid deletion mutant library of Saccharomyces cerevisiae, a genome-wide mutant screen was performed to shed more light on polygodial's antifungal mechanism of action. We identified 66 deletion strains that were hypersensitive and 47 that were highly resistant to polygodial treatment. Among the hypersensitive strains, an enrichment was found for genes required for vacuolar acidification, amino acid biosynthesis, nucleosome mobilization, the transcription mediator complex, autophagy and vesicular trafficking, while the resistant strains were enriched for genes encoding cytoskeleton-binding proteins, ribosomal proteins, mitochondrial matrix proteins, components of the heme activator protein (HAP) complex, and known regulators of the target of rapamycin complex 1 (TORC1) signaling. WE confirm that polygodial triggers a dose-dependent vacuolar alkalinization and that it increases Ca2+ influx and inhibits glucose-induced Ca2+ signaling. Moreover, we provide evidence suggesting that TORC1 signaling and its protective agent ubiquitin play a central role in polygodial resistance, suggesting that they can be targeted by polygodial either directly or via altered Ca2+ homeostasis.


Assuntos
Antifúngicos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Antifúngicos/química , Cálcio , Farmacorresistência Fúngica/genética , Homeostase/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Testes de Sensibilidade Microbiana , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Nucleossomos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Transdução de Sinais , ATPases Vacuolares Próton-Translocadoras
2.
J Ethnopharmacol ; 248: 112352, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31676401

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Warburgia ugandensis Sprague subspecies ugandensis is a plant widely distributed in Eastern, Central and Southern Africa. In humans, it is used to treat respiratory infections, tooth aches, malaria, skin infections, venereal diseases, diarrhea, fevers and aches. AIM OF THE STUDY: This study aims to identify the bioactive compounds against clinically important biofilm-forming strains of Candida and staphylococci that are responsible for tissue and implanted device-related infections. METHODS: Using a bioassay-guided fractionation approach, hexane -, ethanol -, acetone - and water extracts from the leaves of W. ugandensis, their subsequent fractions and isolated compounds were tested against both developing and preformed 24 h-biofilms of Candida albicans SC5314, Candida glabrata BG2, Candida glabrata ATCC 2001, Staphylococcus epidermidis 1457 and Staphylococcus aureus USA 300 using microtiter susceptibility tests. Planktonic cells were also tested in parallel for comparison purposes. Confocal scanning laser microscopy was also used to visualize effects of isolated compounds on biofilm formation. RESULTS: Warburganal, polygodial and alpha-linolenic acid (ALA) were the major bioactive compounds isolated from the acetone extract of W. ugandensis. For both warburganal and polygodial, the biofilm inhibitory concentration that inhibits 50% of C. albicans developing biofilms (BIC50) was 4.5 ±â€¯1 and 10.8 ±â€¯5 µg/mL respectively. Against S. aureus developing biofilms, this value was 37.9 ±â€¯8 µg/mL and 25 µg/mL with warburganal and ALA respectively. Eradication of preformed 24 h biofilms was also observed. Interestingly, synergy between the sesquiterpenoids and azoles against developing C. albicans biofilms resulted in an approximately ten-fold decrease of the effective concentration required to completely inhibit growth of the biofilms by individual compounds. The hydroxyl group in position C-9 in warburganal was identified as essential for activity against staphylococcal biofilms. We also identified additional promising bioactive sesquiterpenoids; drimenol and drimendiol from the structure-activity relationship (SAR) studies. CONCLUSIONS: ALA and four sesquiterpenoids: polygodial, warburganal, drimenol and drimendiol, have shown biofilm-inhibitory activity that has not been reported before and is worth following up. These compounds are potential drug candidates to manage biofilm-based infections, possibly in combination with azoles.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Magnoliopsida , Extratos Vegetais/farmacologia , Folhas de Planta , Staphylococcus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antifúngicos/química , Antifúngicos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Candida/crescimento & desenvolvimento , Magnoliopsida/química , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Staphylococcus/crescimento & desenvolvimento , Relação Estrutura-Atividade
3.
J Microbiol Methods ; 139: 8-11, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28434823

RESUMO

Adhesion is a crucial initial step in microbial biofilm formation. Firm attachment to a target surface subsequently ensures successful colonization and survival despite turbulent conditions. In the laboratory, polystyrene plates are commonly used in biofilm experiments and the 'washing/rinse steps' before staining are critical for assaying biofilm viability. However, these rinse steps risk the removal (partially or entirely) of the formed biofilm, resulting in inconsistent results. The aim of the present study was to optimize conditions for firmer biofilms, less prone to disruption and thus significantly reducing well-to-well variability. Candida albicans SC5314 was used in five different polystyrene 96-well plates from four different manufacturers. Irrespective of how gently we performed the rinse, biofilms came off certain polystyrene plates more easily compared to others. Importantly, preconditioning the polystyrene surfaces with foetal bovine serum (FBS) had a negative impact on firm biofilm attachment. Costar® plates provided the most suitable surface for firm biofilm attachment, both in the presence and absence of FBS. Substratum properties even among seemingly identical synthetic materials may influence biofilm attachment and its subsequent sturdiness, affecting experimental results.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Técnicas Microbiológicas , Poliestirenos , Soro , Animais , Bovinos , Adesão Celular , Técnicas Microbiológicas/instrumentação , Técnicas Microbiológicas/métodos , Poliestirenos/química , Propriedades de Superfície
4.
Mol Ecol Resour ; 17(3): 466-480, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27482633

RESUMO

A broad diversity of arthropod-borne viruses (arboviruses) of global health concern are endemic to East Africa, yet most surveillance efforts are limited to just a few key viral pathogens. Additionally, estimates of arbovirus diversity in the tropics are likely to be underestimated as their discovery has lagged significantly over past decades due to limitations in fast and sensitive arbovirus identification methods. Here, we developed a nearly pan-arbovirus detection assay that uses high-resolution melting (HRM) analysis of RT-PCR products from highly multiplexed assays to differentiate broad diversities of arboviruses. We differentiated 15 viral culture controls and seven additional synthetic viral DNA sequence controls, within Flavivirus, Alphavirus, Nairovirus, Phlebovirus, Orthobunyavirus and Thogotovirus genera. Among Bunyamwera, sindbis, dengue and Thogoto virus serial dilutions, detection by multiplex RT-PCR-HRM was comparable to the gold standard Vero cell plaque assays. We applied our low-cost method for enhanced broad-range pathogen surveillance from mosquito samples collected in Kenya and identified diverse insect-specific viruses, including a new clade in anopheline mosquitoes, and Wesselsbron virus, an arbovirus that can cause viral haemorrhagic fever in humans and has not previously been isolated in Kenya, in Culex spp. and Anopheles coustani mosquitoes. Our findings demonstrate how multiplex RT-PCR-HRM can identify novel viral diversities and potential disease threats that may not be included in pathogen detection panels of routine surveillance efforts. This approach can be adapted to other pathogens to enhance disease surveillance and pathogen discovery efforts, as well as the study of pathogen diversity and viral evolutionary ecology.


Assuntos
Arbovírus/isolamento & purificação , Culicidae/virologia , Flavivirus/isolamento & purificação , Vírus de Insetos/isolamento & purificação , África Oriental , Animais , Humanos , Quênia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Malar J ; 13: 429, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25399409

RESUMO

BACKGROUND: Microscopy and rapid diagnostic tests (RDTs) are common tools for diagnosing malaria, but are deficient in detecting low Plasmodium parasitaemia. A novel molecular diagnostic tool (nPCR-HRM) that combines the sensitivity and specificity of nested PCR (nPCR) and direct PCR-high resolution melting analysis (dPCR-HRM) was developed. To evaluate patterns of anti-malarial drug administration when no parasites are detected, nPCR-HRM was employed to screen blood samples for low parasitaemia from febrile patients without microscopically detectable Plasmodium infections in a rural malaria-endemic setting. METHODS: Blood samples (n = 197) were collected in two islands of Lake Victoria, Kenya, from febrile patients without Plasmodium detectable by microscopy or RDTs. 18S rRNA gene sequences were amplified from extracted DNA by nPCR-HRM, nPCR, and dPCR-HRM to detect and differentiate Plasmodium parasites. The limits of detection (LoD) were compared using serial dilutions of the WHO International Standard for P. falciparum DNA. Data on administration of anti-malarials were collected to estimate prescription of anti-malarial drugs to patients with and without low parasitaemia Plasmodium infections. RESULTS: The coupled nPCR-HRM assay detected Plasmodium parasites with greater sensitivity (LoD = 236 parasites/mL) than either nPCR (LoD = 4,700 parasites/mL) or dPCR-HRM (LoD = 1,490 parasites/mL). Moreover, nPCR-HRM detected and differentiated low-parasitaemia infections in significantly greater proportions of patients than did either nPCR or dPCR-HRM (p-value <0.001). Among these low-parasitaemia infections, 67.7% of patients were treated with anti-malarials, whereas 81.5% of patients not infected with Plasmodium parasites were treated with anti-malarials. CONCLUSIONS: The enhanced sensitivity of nPCR-HRM demonstrates limitations of differential febrile illness diagnostics in rural malaria endemic settings that confound epidemiological estimates of malaria, and lead to inadvertent misadministration of anti-malarial drugs. This is the first study that employs low-parasitaemia Plasmodium diagnostics to quantify the prescription of anti-malarial drugs to both non-malaria febrile patients and patients with low-parasitaemia Plasmodium infections. nPCR-HRM enhances low-parasitaemia malaria diagnosis and can potentially surmount the deficiencies of microscopy and RDT-based results in determining low-parasitaemia Plasmodium infection rates for evaluating malaria elimination efforts. The findings highlight the need for improved differential diagnostics of febrile illness in remote malaria endemic regions.


Assuntos
Sangue/parasitologia , Microscopia/métodos , Técnicas de Diagnóstico Molecular/métodos , Parasitemia/diagnóstico , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Adolescente , Adulto , Idoso , Criança , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Erros de Diagnóstico , Feminino , Humanos , Quênia , Malária/diagnóstico , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade , Temperatura de Transição , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...