Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Sens Diagn ; 3(6): 1044-1050, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38882472

RESUMO

The electrochemical aptamer-based (EAB) sensor platform is the only molecular monitoring approach yet reported that is (1) real time and effectively continuous, (2) selective enough to deploy in situ in the living body, and (3) independent of the chemical or enzymatic reactivity of its target, rendering it adaptable to a wide range of analytes. These attributes suggest the EAB platform will prove to be an important tool in both biomedical research and clinical practice. To advance this possibility, here we have explored the stability of EAB sensors upon storage, using retention of the target recognizing aptamer, the sensor's signal gain, and the affinity of the aptamer as our performance metrics. Doing so we find that low-temperature (-20 °C) storage is sufficient to preserve sensor functionality for at least six months without the need for exogenous preservatives.

2.
Br J Pharmacol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877797

RESUMO

BACKGROUND AND PURPOSE: The ability to measure specific molecules at multiple sites within the body simultaneously, and with a time resolution of seconds, could greatly advance our understanding of drug transport and elimination. EXPERIMENTAL APPROACH: As a proof-of-principle demonstration, here we describe the use of electrochemical aptamer-based (EAB) sensors to measure transport of the antibiotic vancomycin from the plasma (measured in the jugular vein) to the cerebrospinal fluid (measured in the lateral ventricle) of live rats with temporal resolution of a few seconds. KEY RESULTS: In our first efforts, we made measurements solely in the ventricle. Doing so we find that, although the collection of hundreds of concentration values over a single drug lifetime enables high-precision estimates of the parameters describing intracranial transport, due to a mathematical equivalence, the data produce two divergent descriptions of the drug's plasma pharmacokinetics that fit the in-brain observations equally well. The simultaneous collection of intravenous measurements, however, resolves this ambiguity, enabling high-precision (typically of ±5 to ±20% at 95% confidence levels) estimates of the key pharmacokinetic parameters describing transport from the blood to the cerebrospinal fluid in individual animals. CONCLUSIONS AND IMPLICATIONS: The availability of simultaneous, high-density 'in-vein' (plasma) and 'in-brain' (cerebrospinal fluid) measurements provides unique opportunities to explore the assumptions almost universally employed in earlier compartmental models of drug transport, allowing the quantitative assessment of, for example, the pharmacokinetic effects of physiological processes such as the bulk transport of the drug out of the CNS via the dural venous sinuses.

3.
ACS Sens ; 9(6): 3205-3211, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38775190

RESUMO

Electrochemical aptamer-based (EAB) sensors represent the first molecular measurement technology that is both (1) independent of the chemical reactivity of the target, and thus generalizable to many targets and (2) able to function in an accurate, drift-corrected manner in situ in the living body. Signaling in EAB sensors is generated when an electrode-bound aptamer binds to its target ligand, altering the rate of electron transfer from an attached redox reporter and producing an easily detectable change in peak current when the sensor is interrogated using square wave voltammetry. Due to differences in the microscopic surface area of the interrogating electrodes, the baseline peak currents obtained from EAB sensors, however, can be highly variable. To overcome this, we have historically performed single-point calibration using measurements performed in a single sample of known target concentration. Here, however, we explore approaches to EAB sensor operation that negate the need to perform even single-point calibration of individual sensors. These are a ratiometric approach employing the ratio of the peak currents observed at two distinct square wave frequencies, and a kinetic differential measurement approach that employs the difference between peak currents seen at the two frequencies. Using in vivo measurements of vancomycin and phenylalanine as our test bed, we compared the output of these methods with that of the same sensor when single-point calibration was employed. Doing so we find that both methods support accurately drift-corrected measurements in vivo in live rats, even when employing rather crudely handmade devices. By removing the need to calibrate each individual sensor in a sample of known target concentration, these interrogation methods should significantly simplify the use of EAB sensors for in vivo applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Animais , Aptâmeros de Nucleotídeos/química , Ratos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Calibragem , Eletrodos , Ratos Sprague-Dawley , Vancomicina
4.
Langmuir ; 40(16): 8703-8710, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38616608

RESUMO

Electrochemical aptamer-based (EAB) sensors, a minimally invasive means of performing high-frequency, real-time measurement of drugs and biomarkers in situ in the body, have traditionally been fabricated by depositing their target-recognizing aptamer onto an interrogating gold electrode using a "sequential" two-step method involving deposition of the thiol-modified oligonucleotide (typically for 1 h) followed by incubation in mercaptohexanol solution (typically overnight) to complete the formation of a stable, self-assembled monolayer. Here we use EAB sensors targeting vancomycin, tryptophan, and phenylalanine to show that "codeposition", a less commonly employed EAB fabrication method in which the thiol-modified aptamer and the mercaptohexanol diluent are deposited on the electrode simultaneously and for as little as 1 h, improves the signal gain (relative change in signal upon the addition of high concentrations of the target) of the vancomycin and tryptophan sensors without significantly reducing their stability. In contrast, the gain of the phenylalanine sensor is effectively identical irrespective of the fabrication approach employed. This sensor, however, appears to employ binding-induced displacement of the redox reporter rather than binding-induced folding as its signal transduction mechanism, suggesting in turn a mechanism for the improvement observed for the other two sensors. Codeposition thus not only provides a more convenient means of fabricating EAB sensors but also can improve their performance.

5.
Angew Chem Int Ed Engl ; 63(21): e202316678, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38500260

RESUMO

Electrochemical aptamer-based sensors support the high-frequency, real-time monitoring of molecules-of-interest in vivo. Achieving this requires methods for correcting the sensor drift seen during in vivo placements. While this correction ensures EAB sensor measurements remain accurate, as drift progresses it reduces the signal-to-noise ratio and precision. Here, we show that enzymatic cleavage of the sensor's target-recognizing DNA aptamer is a major source of this signal loss. To demonstrate this, we deployed a tobramycin-detecting EAB sensor analog fabricated with the DNase-resistant "xenonucleic acid" 2'O-methyl-RNA in a live rat. In contrast to the sensor employing the equivalent DNA aptamer, the 2'O-methyl-RNA aptamer sensor lost very little signal and had improved signal-to-noise. We further characterized the EAB sensor drift using unstructured DNA or 2'O-methyl-RNA oligonucleotides. While the two devices drift similarly in vitro in whole blood, the in vivo drift of the 2'O-methyl-RNA-employing device is less compared to the DNA-employing device. Studies of the electron transfer kinetics suggested that the greater drift of the latter sensor arises due to enzymatic DNA degradation. These findings, coupled with advances in the selection of aptamers employing XNA, suggest a means of improving EAB sensor stability when they are used to perform molecular monitoring in the living body.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Animais , Ratos , Tobramicina/análise
6.
J Am Chem Soc ; 146(5): 3230-3240, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277259

RESUMO

The ability to quantify cocaine in biological fluids is crucial for both the diagnosis of intoxication and overdose in the clinic as well as investigation of the drug's pharmacological and toxicological effects in the laboratory. To this end, we have performed high-stringency in vitro selection to generate DNA aptamers that bind cocaine with nanomolar affinity and clinically relevant specificity, thus representing a dramatic improvement over the current-generation, micromolar-affinity, low-specificity cocaine aptamers. Using these novel aptamers, we then developed two sensors for cocaine detection. The first, an in vitro fluorescent sensor, successfully detects cocaine at clinically relevant levels in 50% human serum without responding significantly to other drugs of abuse, endogenous substances, or a diverse range of therapeutic agents. The second, an electrochemical aptamer-based sensor, supports the real-time, seconds-resolved measurement of cocaine concentrations in vivo in the circulation of live animals. We believe the aptamers and sensors developed here could prove valuable for both point-of-care and on-site clinical cocaine detection as well as fundamental studies of cocaine neuropharmacology.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cocaína , Animais , Humanos , Aptâmeros de Nucleotídeos/química , Soro , Cocaína/química
7.
ACS Nano ; 17(18): 18525-18538, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37703911

RESUMO

The ability to track the levels of specific molecules, such as drugs, metabolites, and biomarkers, in the living body, in real time and for long durations, would improve our understanding of health and our ability to diagnose, treat, and monitor disease. To this end, we are developing electrochemical aptamer-based (EAB) biosensors, a general platform supporting high-frequency, real-time molecular measurements in the living body. Here we report that the use of an agarose hydrogel protective layer for EAB sensors significantly improves their signaling stability when deployed in the complex, highly time-varying environments found in vivo. The improved stability is sufficient that these hydrogel-protected sensors achieved good baseline stability and precision when deployed in situ in the veins, muscles, bladder, or tumors of living rats without the use of the drift correction approaches traditionally required in such placements. Finally, our implantable gel-protective EAB sensors achieved good biocompatibility when deployed in vivo in the living rats without causing any severe inflammation.


Assuntos
Aptâmeros de Nucleotídeos , Animais , Ratos , Hidrogéis , Próteses e Implantes , Músculos , Transdução de Sinais
8.
ACS Sens ; 8(8): 3051-3059, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37584531

RESUMO

Electrochemical aptamer-based (EAB) sensors are capable of measuring the concentrations of specific molecules in vivo, in real time, and with a few-second time resolution. For their signal transduction mechanism, these sensors utilize a binding-induced conformational change in their target-recognizing, redox-reporter-modified aptamer to alter the rate of electron transfer between the reporter and the supporting electrode. While a variety of voltammetric techniques have been used to monitor this change in kinetics, they suffer from various drawbacks, including time resolution limited to several seconds and sensor-to-sensor variation that requires calibration to remove. Here, however, we show that the use of fast Fourier transform electrochemical impedance spectroscopy (FFT-EIS) to interrogate EAB sensors leads to improved (here better than 2 s) time resolution and calibration-free operation, even when such sensors are deployed in vivo. To showcase these benefits, we demonstrate the approach's ability to perform real-time molecular measurements in the veins of living rats.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ratos , Animais , Aptâmeros de Nucleotídeos/química , Espectroscopia Dielétrica , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Eletrodos
9.
Sci Adv ; 9(20): eadg3254, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37196087

RESUMO

Knowledge of drug concentrations in the brains of behaving subjects remains constrained on a number of dimensions, including poor temporal resolution and lack of real-time data. Here, however, we demonstrate the ability of electrochemical aptamer-based sensors to support seconds-resolved, real-time measurements of drug concentrations in the brains of freely moving rats. Specifically, using such sensors, we achieve <4 µM limits of detection and 10-s resolution in the measurement of procaine in the brains of freely moving rats, permitting the determination of the pharmacokinetics and concentration-behavior relations of the drug with high precision for individual subjects. In parallel, we have used closed-loop feedback-controlled drug delivery to hold intracranial procaine levels constant (±10%) for >1.5 hours. These results demonstrate the utility of such sensors in (i) the determination of the site-specific, seconds-resolved neuropharmacokinetics, (ii) enabling the study of individual subject neuropharmacokinetics and concentration-response relations, and (iii) performing high-precision control over intracranial drug levels.


Assuntos
Encéfalo , Procaína , Ratos , Animais , Retroalimentação
10.
Br J Clin Pharmacol ; 89(9): 2798-2812, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37186478

RESUMO

AIM: Pharmacokinetics have historically been assessed using drug concentration data obtained via blood draws and bench-top analysis. The cumbersome nature of these typically constrains studies to at most a dozen concentration measurements per dosing event. This, in turn, limits our statistical power in the detection of hours-scale, time-varying physiological processes. Given the recent advent of in vivo electrochemical aptamer-based (EAB) sensors, however, we can now obtain hundreds of concentration measurements per administration. Our aim in this paper was to assess the ability of these time-dense datasets to describe time-varying pharmacokinetic models with good statistical significance. METHODS: We used seconds-resolved measurements of plasma tobramycin concentrations in rats to statistically compare traditional one- and two-compartmental pharmacokinetic models to new models in which the proportional relationship between a drug's plasma concentration and its elimination rate varies in response to changing kidney function. RESULTS: We found that a modified one-compartment model in which the proportionality between the plasma concentration of tobramycin and its elimination rate falls reciprocally with time either meets or is preferred over the standard two-compartment pharmacokinetic model for half of the datasets characterized. When we reduced the impact of the drug's rapid distribution phase on the model, this one-compartment, time-varying model was statistically preferred over the standard one-compartment model for 80% of our datasets. CONCLUSIONS: Our results highlight both the impact that simple physiological changes (such as varying kidney function) can have on drug pharmacokinetics and the ability of high-time resolution EAB sensor measurements to identify such impacts.


Assuntos
Modelos Biológicos , Tobramicina , Ratos , Animais
11.
Analyst ; 148(7): 1562-1569, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36891771

RESUMO

Electrochemical, aptamer-based (EAB) sensors are the first molecular monitoring technology that is (1) based on receptor binding and not the reactivity of the target, rendering it fairly general, and (2) able to support high-frequency, real-time measurements in situ in the living body. To date, EAB-derived in vivo measurements have largely been performed using three electrodes (working, reference, counter) bundled together within a catheter for insertion into the rat jugular. Exploring this architecture, here we show that the placement of these electrodes inside or outside of the lumen of the catheter significantly impacts sensor performance. Specifically, we find that retaining the counter electrode within the catheter increases the resistance between it and the working electrode, increasing the capacitive background. In contrast, extending the counter electrode outside the lumen of the catheter reduces this effect, significantly enhancing the signal-to-noise of intravenous molecular measurements. Exploring counter electrode geometries further, we find that they need not be larger than the working electrode. Putting these observations together, we have developed a new intravenous EAB architecture that achieves improved performance while remaining short enough to safely emplace in the rat jugular. These findings, though explored here with EAB sensors may prove important for the design of many electrochemical biosensors.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ratos , Animais , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas , Eletrodos
12.
J Sci Med Sport ; 26 Suppl 1: S46-S53, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36841706

RESUMO

OBJECTIVES: Technologies supporting the continuous, real-time measurement of blood oxygen saturation and plasma glucose levels have improved our ability to monitor performance status. Our ability to monitor other molecular markers of performance, however, including the hormones known to indicate overtraining and general health, has lagged. That is, although a number of other molecular markers of performance status have been identified, we have struggled to develop viable technologies supporting their real-time monitoring in the body. Here we review biosensor approaches that may support such measurements, as well as the molecules potentially of greatest interest to monitor. DESIGN: Narrative literature review. METHOD: Literature review. RESULTS: Significant effort has been made to harness the specificity, affinity, and generalizability of biomolecular recognition in a platform technology supporting continuous in vivo molecular measurements. Most biosensor approaches, however, are either not generalizable to most targets, or fail when challenged in the complex environments found in vivo. Electrochemical aptamer-based sensors, in contrast, are the first technology to simultaneously achieve both of these critical attributes. In an effort to illustrate the potential of this platform technology, we both critically review the literature describing it and briefly survey some of the molecular performance markers we believe will prove advantageous to monitor using it. CONCLUSIONS: Electrochemical aptamer-based sensors may be the first truly generalizable technology for monitoring specific molecules in situ in the body and how adaptation of the platform to subcutaneous microneedles will enable the real-time monitoring of performance markers via a wearable, minimally invasive device.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Biomarcadores , Monitorização Fisiológica
13.
ACS Sens ; 8(1): 150-157, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36534756

RESUMO

Dose-limiting toxicity and significant patient-to-patient pharmacokinetic variability often render it difficult to achieve the safe and effective dosing of drugs. This is further compounded by the slow, cumbersome nature of the analytical methods used to monitor patient-specific pharmacokinetics, which inevitably rely on blood draws followed by post-facto laboratory analysis. Motivated by the pressing need for improved "therapeutic drug monitoring", we are developing electrochemical aptamer-based (EAB) sensors, a minimally invasive biosensor architecture that can provide real-time, seconds-resolved measurements of drug levels in situ in the living body. A key advantage of EAB sensors is that they are generalizable to the detection of a wide range of therapeutic agents because they are independent of the chemical or enzymatic reactivity of their targets. Three of the four therapeutic drug classes that have, to date, been shown measurable using in vivo EAB sensors, however, bind to nucleic acids as part of their mode of action, leaving open questions regarding the extent to which the approach can be generalized to therapeutics that do not. Here, we demonstrate real-time, in vivo measurements of plasma methotrexate, an antimetabolite (a mode of action not reliant on DNA binding) chemotherapeutic, following human-relevant dosing in a live rat animal model. By providing hundreds of drug concentration values, the resulting seconds-resolved measurements succeed in defining key pharmacokinetic parameters, including the drug's elimination rate, peak plasma concentration, and exposure (area under the curve), with unprecedented 5 to 10% precision. With this level of precision, we easily identify significant (>2-fold) differences in drug exposure occurring between even healthy rats given the same mass-adjusted methotrexate dose. By providing a real-time, seconds-resolved window into methotrexate pharmacokinetics, such measurements can be used to precisely "individualize" the dosing of this significantly toxic yet vitally important chemotherapeutic.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ácidos Nucleicos , Humanos , Ratos , Animais , Metotrexato , Técnicas Biossensoriais/métodos , Monitoramento de Medicamentos/métodos
15.
Methods Mol Biol ; 2393: 479-492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34837195

RESUMO

The monitoring of specific molecules in the living body has historically required sample removal (e.g., blood draws, microdialysis) followed by analysis via cumbersome, laboratory-bound processes. Those few exceptions to this rule (e.g., glucose, pyruvate, the monoamines) are monitored using "one-off" technologies reliant on the specific enzymatic or redox reactivity of their targets, and thus not generalizable to the measurement of other targets. In response we have developed in vivo electrochemical aptamer-based (E-AB) sensors, a modular, receptor-based measurement technology that is independent of the chemical reactivity of its targets, and thus has the potential to be generalizable to a wide range of analytes. To further the adoption of this in vivo molecular measurement approach by other researchers and to accelerate its ultimate translation to the clinic, we present here our standard protocols for the fabrication and use of intravenous E-AB sensors.


Assuntos
Técnicas Eletroquímicas , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Oxirredução
16.
Front Psychiatry ; 13: 1031585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684008

RESUMO

Introduction: Incubation of drug-craving refers to a time-dependent increase in drug cue-elicited craving that occurs during protracted withdrawal. Historically, rat models of incubated cocaine craving employed extended-access (typically 6 h/day) intravenous drug self-administration (IV-SA) procedures, although incubated cocaine craving is reported to occur following shorter-access IV-SA paradigms. The notoriously low-throughput of extended-access IV-SA prompted us to determine whether two different short-access IV-SA procedures akin to those in the literature result in qualitatively similar changes in glutamate receptor expression and the activation of downstream signaling molecules within prefrontal cortex (PFC) subregions as those reported previously by our group under 6h-access conditions. Methods: For this, adult, male Sprague-Dawley rats were trained to intravenously self-administer cocaine for 2 h/day for 10 consecutive days (2-h model) or for 6 h on day 1 and 2 h/day for the remaining 9 days of training (Mixed model). A sham control group was also included that did not self-administer cocaine. Results: On withdrawal day 3 or 30, rats were subjected to a 2-h test of cue-reinforced responding in the absence of cocaine and a time-dependent increase in drug-seeking was observed under both IV-SA procedures. Immunoblotting of brain tissue collected immediately following the cue test session indicated elevated phospho-Akt1, phospho-CaMKII and Homer2a/b expression within the prelimbic subregion of the PFC of cocaine-incubated rats. However, we failed to detect incubation-related changes in Group 1 metabotropic glutamate receptor or ionotropic glutamate receptor subunit expression in either subregion. Discussion: These results highlight further a role for Akt1-related signaling within the prelimbic cortex in driving incubated cocaine craving, and provide novel evidence supporting a potential role also for CaMKII-dependent signaling through glutamate receptors in this behavioral phenomenon.

17.
ACS Sens ; 6(9): 3163-3169, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34420291

RESUMO

Calcium-responsive contrast agents for magnetic resonance imaging (MRI) offer a promising approach for noninvasive brain-wide monitoring of neural activity at any arbitrary depth. Current examples of MRI-based calcium probes involve synthetic molecules and nanoparticles, which cannot be used to examine calcium signaling in a genetically encoded form. Here, we describe a new MRI sensor for calcium, based entirely on a naturally occurring calcium-binding protein known as calprotectin. Calcium-binding causes calprotectin to sequester manganese ions, thereby limiting Mn2+ enhanced paramagnetic relaxation of nearby water molecules. We demonstrate that this mechanism allows calprotectin to alter T1 and T2 based MRI signals in response to biologically relevant calcium concentrations. The resulting response amplitude, i.e., change in relaxation time, is comparable to existing MRI-based calcium sensors as well as other reported protein-based MRI sensors. As a preliminary demonstration of its biological applicability, we used calprotectin to detect calcium in a lysed hippocampal cell preparation as well as in intact Chinese hamster ovary cells treated with a calcium ionophore. Calprotectin thus represents a promising path toward noninvasive imaging of calcium signaling by combining the molecular and cellular specificity of genetically encodable tools with the ability of MRI to image through scattering tissue of any size and depth.


Assuntos
Técnicas Biossensoriais , Cálcio , Animais , Células CHO , Cricetinae , Cricetulus , Imageamento por Ressonância Magnética
18.
Neuropsychopharmacology ; 46(12): 2090-2100, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34188183

RESUMO

Cue-elicited drug-craving is a cardinal feature of addiction that intensifies (incubates) during protracted withdrawal. In a rat model, these addiction-related behavioral pathologies are mediated, respectively, by time-dependent increases in PI3K/Akt1 signaling and reduced Group 1 metabotropic glutamate receptor (mGlu) expression, within the ventromedial prefrontal cortex (vmPFC). Herein, we examined the capacity of single oral dosing with everolimus, an FDA-approved inhibitor of the PI3K/Akt effector mTOR, to reduce incubated cocaine-craving and reverse incubation-associated changes in vmPFC kinase activity and mGlu expression. Rats were trained to lever-press for intravenous infusions of cocaine or delivery of sucrose pellets and then subjected to tests for cue-reinforced responding during early (3 days) or late (30-46 days) withdrawal. Rats were gavage-infused with everolimus (0-1.0 mg/kg), either prior to testing to examine for effects upon reinforcer-seeking behavior, or immediately following testing to probe effects upon the consolidation of extinction learning. Single oral dosing with everolimus dose-dependently blocked cocaine-seeking during late withdrawal and the effect lasted at least 24 h. No everolimus effects were observed for cue-elicited sucrose-seeking or cocaine-seeking in early withdrawal. In addition, everolimus treatment, following initial cue-testing, reduced subsequent cue hyper-responsivity exhibited observed during late withdrawal, arguing a facilitation of extinction memory consolidation. everolimus' "anti-incubation" effect was associated with a reversal of withdrawal-induced changes in indices of PI3K/Akt1/mTOR activity, as well as Homer protein and mGlu1/5 expression, within the prelimbic (PL) subregion of the prefrontal cortex. Our results indicate mTOR inhibition as a viable strategy for interrupting heightened cocaine-craving and facilitating addiction recovery during protracted withdrawal.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Preparações Farmacêuticas , Síndrome de Abstinência a Substâncias , Animais , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Fissura , Sinais (Psicologia) , Reposicionamento de Medicamentos , Comportamento de Procura de Droga , Everolimo , Extinção Psicológica , Fosfatidilinositol 3-Quinases , Ratos , Autoadministração , Síndrome de Abstinência a Substâncias/tratamento farmacológico
19.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540617

RESUMO

Methamphetamine (MA) is a highly addictive psychomotor stimulant drug. In recent years, MA use has increased exponentially on a global scale, with the number of MA-involved deaths reaching epidemic proportions. There is no approved pharmacotherapy for treating MA use disorder, and we know relatively little regarding the neurobiological determinants of vulnerability to this disease. Extracellular signal-regulated kinase (ERK) is an important signaling molecule implicated in the long-lasting neuroadaptations purported to underlie the development of substance use disorders, but the role for this kinase in the propensity to develop addiction, particularly MA use disorder, is uncharacterized. In a previous MA-induced place-conditioning study of C57BL/6J mice, we characterized mice as MA-preferring, -neutral, or -avoiding and collected tissue from the medial prefrontal cortex (mPFC). Using immunoblotting, we determined that elevated phosphorylated ERK expression within the medial prefrontal cortex (mPFC) is a biochemical correlate of the affective valence of MA in a population of C57BL/6J mice. We confirmed the functional relevance for mPFC ERK activation for MA-induced place-preference via site-directed infusion of the MEK inhibitor U0126. By contrast, ERK inhibition did not have any effect upon MA-induced locomotion or its sensitization upon repeated MA treatment. Through studies of transgenic mice with alanine point mutations on T1123/S1126 of mGlu5 that disrupt ERK-dependent phosphorylation of the receptor, we discovered that ERK-dependent mGlu5 phosphorylation normally suppresses MA-induced conditioned place-preference (MA-CPP), but is necessary for this drug's reinforcing properties. If relevant to humans, the present results implicate individual differences in the capacity of MA-associated cues/contexts to hyper-activate ERK signaling within mPFC in MA Use Disorder vulnerability and pose mGlu5 as one ERK-directed target contributing to the propensity to seek out and take MA.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Metanfetamina/farmacologia , Transtornos Relacionados com Narcóticos/metabolismo , Córtex Pré-Frontal/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Relacionados com Narcóticos/psicologia , Fosforilação , Córtex Pré-Frontal/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Receptor de Glutamato Metabotrópico 5/química , Reforço Psicológico , Recompensa
20.
Behav Brain Res ; 398: 112959, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33053382

RESUMO

Understanding the mechanisms underpinning individual variance in addiction vulnerability requires the development of validated, high-throughput screens. In a prior study of a large sample of male isogenic C57BL/6J mice, the direction and magnitude of methamphetamine (MA)-induced place-conditioning predicts the propensity to acquire oral MA self-administration, as well as the efficacy of MA to serve as a reinforcer. The present study examined whether or not such a predictive relationship also exists in females. Adult C57BL/6J females underwent a 4-day MA place-conditioning paradigm (once daily injections of 2 mg/kg) and were then trained to nose-poke for delivery of a 20 mg/L MA solution under increasing schedules of reinforcement, followed by dose-response testing (5-400 mg/L MA). Akin to males, 53 % of the females exhibited a conditioned place-preference, while 32 % of the mice were MA-neutral and 15 % exhibited a conditioned place-aversion. However, unlike males, the place-conditioning phenotype did not transfer to MA-reinforced nose-poking behavior under operant-conditioning procedures, with 400 mg/L MA intake being inversely correlated place-conditioning. While only one MA-conditioning dose has been assayed to date, these data indicate that sex does not significantly shift the proportion of C57BL/6J mice that perceive MA's interoceptive effects as positive, neutral or aversive. However, a sex difference appears to exist regarding the predictive relationship between the motivational valence of MA and subsequent drug-taking behavior; females exhibit MA-taking behavior and reinforcement, despite their initial perception of the stimulant interoceptive effects as positive, neutral or negative.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Metanfetamina/farmacologia , Motivação/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/administração & dosagem , Modelos Animais de Doenças , Feminino , Metanfetamina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...