Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(4): 1571-1577, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33439030

RESUMO

Solid surfaces, in particular polymer surfaces, are able to adapt upon contact with a liquid. Adaptation results in an increase in contact angle hysteresis and influences the mobility of sliding drops on surfaces. To study adaptation and its kinetics, we synthesized a random copolymer composed of styrene and 11-25 mol% acrylic acid (PS/PAA). We measured the dynamic advancing (θA) and receding (θR) contact angles of water drops sliding down a tilted plate coated with this polymer. We measured θA ≈ 87° for velocities of the contact line <20 µm/s. At higher velocities, θA gradually increased to ∼98°. This value is similar to θA of a pure polystyrene (PS) film, which we studied for comparison. We associate the gradual increase in θA to the adaptation process to water: The presence of water leads to swelling and/or an enrichment of acid groups at the water/polymer interface. By applying the latest adaptation theory (Butt et al. Langmuir 2018, 34, 11292), we estimated the time constant of this adaptation process to be ≪1 s. For sliding water drops, θR is ∼10° lower compared to the reference PS surface for all tested velocities. Thus, at the receding side of a sliding drop, the surface is already enriched by acid groups. For a water drop with a width of 5 mm, the increase in contact angle hysteresis corresponds to an increase in capillary force in the range of 45-60 µN, depending on sliding velocity.

2.
Macromol Rapid Commun ; 40(21): e1900395, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31507007

RESUMO

The synthesis of ionogels with a responsive, self-replenishing surface for combating biofouling is described. Ionogels are prepared by infiltrating poly(vinylidene fluoride-co-hexafluoropropylene) with binary mixtures of ionic liquids (IL): 1-octadecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ([C18 C1 im][NTf2 ], melting point Tm = 55 °C) and 1-hexyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ([C6 C1 im][NTf2 ], Tm = -9 °C). The IL mixtures release spontaneously from the gel matrix and eventually crystallize on the surface. This leads to self-replenishment of the surface of ionogels even after mechanical damage. The incorporation of [C6 C1 im][NTf2 ] provides the antimicrobial efficacy of ionogels while the crystals of [C18 C1 im][NTf2 ] serve as a skeleton maintaining [C6 C1 im][NTf2 ] on the surface. By heating, the ionogel surface transforms from solid to liquid-infused state-the removal of biofilms/bacteria developed under a long time of colonization is facilitated. The antimicrobial efficacy is maintained even after several cycles of biofilm formation and detachment. This work provides an opportunity to apply ionogels as functional coatings with renewable antibiofouling properties.


Assuntos
Incrustação Biológica/prevenção & controle , Líquidos Iônicos/farmacologia , Polivinil/farmacologia , Líquidos Iônicos/química , Estrutura Molecular , Tamanho da Partícula , Polivinil/química , Propriedades de Superfície
3.
Chemistry ; 25(46): 10946-10953, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31233240

RESUMO

Photoisomerization in some azobenzene-containing polymers (azopolymers) results in reversible solid-to-liquid transitions because trans- and cis-azopolymers have different glass transition temperatures. This property enables photoinduced healing and processing of azopolymers with high spatiotemporal resolution. However, a general lack of knowledge about the influence of the polymer structure on photoinduced reversible solid-to-liquid transitions hinders the design of such novel polymers. Herein, the synthesis and photoresponsive behavior of new azopolymers with different lengths of spacers between the polymer backbone and the azobenzene group on the side chain are reported. Azopolymers with no and 20 methylene spacers did not show photoinduced solid-to-liquid transitions. Azopolymers with 6 or 12 methylene spacers showed photoinduced solid-to-liquid transitions. This study demonstrates that spacers are essential for azopolymers with photoinduced reversible solid-to-liquid transitions, and thus, gives an insight into how to design azopolymers for photoinduced healing and processing.

4.
J Phys Chem B ; 121(3): 620-629, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28001074

RESUMO

A common feature of ionic liquids composed of cations with long aliphatic side chains is structural heterogeneities on the nanometer length scale. This so-called microphase separation arises from the clustering of aliphatic moieties. The temperature dependence of the liquid bulk structure was studied by small-angle X-ray and neutron scattering for a set of methylimidazolium ([C18C1im]+, [C22C1im]+) based ionic liquids with tris(pentafluoroethyl)trifluorophosphate ([FAP]-), bis(trifluoromethylsulfonyl)imide ([NTf2]-), and bis(nonafluorobutylsulfonyl)imide ([NNf2]-) anions. The experimental data is quantitatively analyzed using a generalized Teubner-Strey model. Discussion of the resulting periodicity d and correlation length ξ shows that the structural heterogeneities are governed by the interplay between the alkyl chain length, the geometry of the anion, and entropic effects. Connections between the mesoscopic correlation functions, density, and entropy of fusion are discussed in comparison to alcohols. The observed dependencies allow predictions on the mesoscopic correlation functions based on macroscopic bulk quantities.

5.
J Chem Phys ; 138(12): 12A503, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23556754

RESUMO

The chain dynamics at the glass transition of poly(ethylmethacrylate) in the bulk is compared to that of mixtures of the polymer with nanoparticles by advanced NMR methods. In order to make the two components compatible, the particles were functionalized with the polymer itself. Particular emphasis is placed on the extended local chain conformations of this polymer accessible by (13)C NMR spectroscopy. The isotropization dynamics of these extended conformations is only slightly changed in the mixtures, but is significantly slowed down by attachment of the chains to the nanoparticles themselves. The slowing down is studied at various distances from the nanoparticle and is observed for most of the attached chains segments except for the chain ends. The results are put into perspective to the glass transition in polymers attached to surfaces, thin polymer layers, and the chain dynamics of star polymers.


Assuntos
Metilmetacrilatos/química , Nanopartículas/química , Vidro/química , Espectroscopia de Ressonância Magnética
6.
Chemphyschem ; 14(3): 543-9, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23345021

RESUMO

Nanoadhesion on a self-assembled monolayer of 4-methyl-4'-mercaptobiphenyl is measured using a modified atomic force microscope. The dependence of the adhesion force on the loading rate is analyzed with the Dudko-Hummer-Szabo model, and the kinetic and interaction potential parameters for a single terminal group are extracted. The energy and location of the activation barrier suggest that the adhesion is dominated by van der Waals dispersion forces. The humidity effect on the nanoadhesion is also studied. The results are compared with previously measured values for methyl-terminated alkane thiols and the influence of the thiol rigidity on the adhesion force is discussed.

7.
Langmuir ; 23(4): 2203-7, 2007 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-17279715

RESUMO

Polymer brush coatings are well-known for their ability to tailor surface properties in a wide range of applications from colloid stabilization to medicine. In most cases, the brushes are used in solution. Consequently, efforts were expended to experimentally investigate or theoretically predict the swelling behavior of the brushes in solvents of different qualities. Here, we show that the micromechanical cantilever (MC) sensor technique is a tool to perform time-resolved physicochemical investigations of thin layers such as polymer brushes. Complementary to scattering techniques, which measure the thickness, the MC sensor technique provides information about changes in the internal pressure of the brushes during a swelling and deswelling process. We show that the kinetics of both swelling and deswelling are dependent on solvent quality. Comparing the measured data with its thickness evolution, which was calculated based on the Flory-Huggins theory, we found that only the first 10% of the thickness increase of the polymer brush results in a significant pressure increase inside the polymer brush layer.

8.
J Chem Phys ; 121(18): 9140-6, 2004 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-15527382

RESUMO

We studied the thermal diffusion behavior of poly(N-isopropylacrylamide) (PNiPAM) in ethanol in a temperature range from T = 14.0 degrees C to T = 40.0 degrees C by means of thermal diffusion forced Rayleigh scattering. The obtained Soret coefficient S(T) of PNiPAM was positive for lower temperatures (T < 34 degrees C), while S(T) showed a negative value for higher temperatures (T > 34 degrees C). This means PNiPAM molecules move to the cold side for temperatures T < 34 degrees C, whereas they move to the warm side for T > 34 degrees C. This is the first nonaqueous polymeric system for which a sign change with temperature has been observed. We performed static and dynamic light scattering experiments in the same temperature range. The second virial coefficient determined from dilute solutions by static light scattering (SLS) was positive in the comparable temperature range. The results of SLS for the semidilute solution showed a strong repulsion among PNiPAM chains which was enhanced by increasing temperature. These results imply that the observed thermally induced sign change of S(T) does not depend on the intermolecular interactions among PNiPAM chains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...