Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 531(14): 1482-1508, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37478205

RESUMO

Serotonin (5-hydroxytryptamine) acts as a widespread neuromodulator in the nervous system of vertebrates and invertebrates. In insects, it promotes feeding, enhances olfactory sensitivity, modulates aggressive behavior, and, in the central complex of Drosophila, serves a role in sleep homeostasis. In addition to a role in sleep-wake regulation, the central complex has a prominent role in spatial orientation, goal-directed locomotion, and navigation vector memory. To further understand the role of serotonergic signaling in this brain area, we analyzed the distribution and identity of serotonin-immunoreactive neurons across a wide range of insect species. While one bilateral pair of tangential neurons innervating the central body was present in all species studied, a second type was labeled in all neopterans but not in dragonflies and firebrats. Both cell types show conserved major fiber trajectories but taxon-specific differences in dendritic targets outside the central body and axonal terminals in the central body, noduli, and lateral accessory lobes. In addition, numerous tangential neurons of the protocerebral bridge were labeled in all studied polyneopteran species except for Phasmatodea, but not in Holometabola. Lepidoptera and Diptera showed additional labeling of two bilateral pairs of neurons of a third type. The presence of serotonin in systems of columnar neurons apparently evolved independently in dragonflies and desert locusts. The data suggest distinct evolutionary changes in the composition of serotonin-immunolabeled neurons of the central complex and provides a promising basis for a phylogenetic study in a wider range of arthropod species.


Assuntos
Odonatos , Serotonina , Animais , Serotonina/metabolismo , Filogenia , Neurônios/metabolismo , Encéfalo/anatomia & histologia , Insetos
2.
J Anim Ecol ; 92(3): 568-579, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642830

RESUMO

Global climate change is expected to have pervasive effects on the diversity and distribution of species, particularly ectotherms whose body temperatures depend on environmental temperatures. However, these impacts remain difficult to predict, in part because ectotherms may adapt or acclimate to novel conditions or may use behavioural thermoregulation to reduce their exposure to stressful microclimates. Here we examine the potential for physiological and behavioural changes to mitigate effects of environmental warming on five species of ants in a temperate forest habitat subject to urban warming. We worked in eight urban and eight non-urban forest sites in North Carolina, USA; sites experienced a 1.1°C range of mean summer air temperatures. At each site, we documented species-specific microclimates (ant operative temperatures, Te ) and ant activity on a transect of 14 bait stations at three times of day. In the laboratory, we measured upper thermal tolerance (CTmax ) and thermal preference (Tpref ) for each focal species. We then asked whether thermal traits shifted at hotter sites, and whether ants avoided non-preferred microclimates in the field. CTmax and Tpref did not increase at warmer sites, indicating that these populations did not adapt or acclimate to urban warming. Consistent with behavioural thermoregulation, four of the five species were less likely to occupy baits where Te departed from Tpref . Apparent thermoregulation resulted from fixed diel activity patterns that helped ants avoid the most inappropriate temperatures but did not compensate for daily or spatial temperature variation: Hotter sites had hotter ants. This study uses a novel approach to detect behavioural thermoregulation and sublethal warming in foraging insects. The results suggest that adaptation and behaviour may not protect common temperate forest ants from a warming climate, and highlight the need to evaluate effects of chronic, sublethal warming on small ectotherms.


Assuntos
Formigas , Animais , Formigas/fisiologia , Temperatura Alta , Temperatura , Insetos , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...