Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 140(10): 3347-51, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25857214

RESUMO

The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2 µm and pillar diameters are typically in the 200-400 nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-ranging lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.

2.
Anal Chem ; 86(23): 11819-25, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25368983

RESUMO

The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. The following work involves superhydrophobic surfaces that have as a framework deterministic or stochastic silicon pillar arrays formed by lithographic or metal dewetting protocols, respectively. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. Native pillars and pillars with hydrophobic modification are used. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A ≥ 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 × 10(-12) M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up uses in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.

3.
Anal Chem ; 85(24): 11802-8, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24228860

RESUMO

Unlike HPLC, there has been sparse advancement in the stationary phases used for planar chromatography. Nevertheless, modernization of planar chromatography platforms can further highlight the technique's ability to separate multiple samples simultaneously, utilize orthogonal separation formats, image (detect) separations without rigorous temporal demands, and its overall simplicity. This paper describes the fabrication and evaluation of ordered pillar arrays that are chemically modified for planar chromatography and inspected by fluorescence microscopy to detect solvent development and analyte bands (spots). Photolithography, in combination with anisotropic deep reactive ion etching, is used to produce uniform high aspect ratio silicon pillars. The pillar heights, diameters, and pitch variations are approximately 15-20 µm, 1-3 µm, and 2-6 µm, respectively, with the total pillar array size typically 1 cm × 3 cm. The arrays are imaged using scanning electron microscopy in order to measure the pillar diameter and pitch as well as analyze the pillar sidewalls after etching and stationary phase functionalization. These fluidic arrays will enable exploration of the impact on mass transport and chromatographic efficiency caused by altering the pillar array morphology. A C18 reverse stationary phase (RP), common RP solvents that are transported by traditional but uniquely rapid capillary flow, and Rhodamine 6G (R6G) as the preliminary analyte are used for this initial evaluation. The research presented in this article is aimed at understanding and overcoming the unique challenges in developing and utilizing ordered pillar arrays as a new platform for planar chromatography: focusing on fabrication of expansive arrays, studies of solvent transport, methods to create compatible sample spots, and an initial evaluation of band dispersion.

4.
Anal Chem ; 85(8): 3991-8, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23521758

RESUMO

A method for hyphenating surface enhanced Raman scattering (SERS) and thin-layer chromatography (TLC) is presented that employs silver-polymer nanocomposites as an interface. Through the process of conformal blotting, analytes are transferred from TLC plates to nanocomposite films before being imaged via SERS. A procedure leading to maximum blotting efficiency was established by investigating various parameters such as time, pressure, and type and amount of blotting solvent. Additionally, limits of detection were established for test analytes malachite green isothiocyanate, 4-aminothiophenol, and Rhodamine 6G (Rh6G) ranging from 10(-7) to 10(-6) M. Band broadening due to blotting was minimal (∼10%) as examined by comparing the spatial extent of TLC-spotted Rh6G via fluorescence and then the SERS-based spot size on the nanocomposite after the blotting process. Finally, a separation of the test analytes was carried out on a TLC plate followed by blotting and the acquisition of distance × wavenumber × intensity three-dimensional TLC-SERS plots.

5.
Analyst ; 137(4): 1005-12, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22193421

RESUMO

Numerous studies have addressed the challenges of implementing miniaturized microfluidic platforms for chemical and biological separation applications. However, the integration of real time detection schemes capable of providing valuable sample information under continuous, ultra low volume flow regimes has not fully been addressed. In this report we present a chip based chromatography system comprising of a pillar array separation column followed by a reagent channel for passive mixing of a silver colloidal solution into the eluent stream to enable surface enhanced Raman spectroscopy (SERS) detection. Our design is the first integrated chip based microfluidic device to combine pressure driven separation capability with real time SERS detection. With this approach we demonstrate the ability to collect distinctive SERS spectra with or without complete resolution of chromatographic bands. Computational fluidic dynamic (CFD) simulations are used to model the diffusive mixing behaviour and velocity profiles of the two confluent streams in the microfluidic channels. We evaluate the SERS spectral band intensity and chromatographic efficiency of model analytes with respect to kinetic factors as well as signal acquisition rates. Additionally, we discuss the use of a pluronic modified silver colloidal solution as a means of eliminating contamination generally caused by nanoparticle adhesion to channel surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...