Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 120: 73-80, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23455230

RESUMO

Dose assessments typically consider environmental systems as static through time, but environmental disturbances such as drought and fire are normal, albeit infrequent, events that can impact dose-influential attributes of many environmental systems. These phenomena occur over time frames of decades or longer, and are likely to be exacerbated under projected warmer, drier climate. As with other types of dose assessment, the impacts of environmental disturbances are often overlooked when evaluating dose from aeolian transport of radionuclides and other contaminants. Especially lacking are predictions that account for potential changing vegetation cover effects on radionuclide transport over the long time frames required by regulations. A recently developed dynamic wind-transport model that included vegetation succession and environmental disturbance provides more realistic long-term predictability. This study utilized the model to estimate emission rates for aeolian transport, and compare atmospheric dispersion and deposition rates of airborne plutonium-contaminated soil into neighboring areas with and without environmental disturbances. Specifically, the objective of this study was to utilize the model results as input for a widely used dose assessment model (CAP-88). Our case study focused on low levels of residual plutonium found in soils from past operations at Los Alamos National Laboratory (LANL), in Los Alamos, NM, located in the semiarid southwestern USA. Calculations were conducted for different disturbance scenarios based on conditions associated with current climate, and a potential future drier and warmer climate. Known soil and sediment concentrations of plutonium were used to model dispersal and deposition of windblown residual plutonium, as a function of distance and direction. Environmental disturbances that affected vegetation cover included ground fire, crown fire, and drought, with reoccurrence rates for current climate based on site historical patterns. Using site-specific meteorology, accumulation rates of plutonium in soil were modeled in a variety of directions and distances from LANL sources. Model results suggest that without disturbances, areas downwind to the contaminated watershed would accumulate LANL-derived plutonium at a relatively slow rate (<0.01 Bq m(-2) yr(-1)). However, model results under more realistic assumptions that include environmental disturbances show accumulation rates more than an order-of-magnitude faster. More generally, this assessment highlights the broader need in radioecology and environmental health physics to consider infrequent but normal environmental disturbances in longer-term dose assessments.


Assuntos
Movimentos do Ar , Modelos Teóricos , Plutônio/análise , Poluentes do Solo/análise , Sedimentos Geológicos/análise , New Mexico , Doses de Radiação , Monitoramento de Radiação , Resíduos Radioativos
2.
J Environ Qual ; 31(2): 599-612, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11931452

RESUMO

Redistribution of soil, nutrients, and contaminants is often driven by wind erosion in semiarid shrublands. Wind erosion depends on wind velocity (particularly during episodic, high-velocity winds) and on vegetation, which is generally sparse and spatially heterogeneous in semiarid ecosystems. Further, the vegetation cover can be rapidly and greatly altered due to disturbances, particularly fire. Few studies, however, have evaluated key temporal and spatial components of wind erosion with respect to (i) erosion rates on the scale of weeks as a function of episodic high-velocity winds, (ii) rates at unburned and burned sites, and (iii) within-site spatial heterogeneity in erosion. Measuring wind erosion in unburned and recently burned Chihuahuan desert shrubland, we found (i) weekly wind erosion was related more to daily peak wind velocities than to daily average velocities as consistent with our findings of a threshold wind velocity at approximately 7 m s(-1); (ii) greater erodibility in burned vs. unburned shrubland as indicated by erosion thresholds, aerodynamic roughness, and nearground soil movement; and (iii) burned shrubland lost soil from intercanopy and especially canopy patches in contrast to unburned shrubland, where soil accumulated in canopy patches. Our results are among the first to quantify post-fire wind erosion and highlight the importance of accounting for finer temporal and spatial variation in shrubland wind erosion. This finer-scale variation relates to semiarid land degradation, and is particularly relevant for predictions of contaminant resuspension and redistribution, both of which historically ignore finer-scale temporal and spatial variation in wind erosion.


Assuntos
Conservação dos Recursos Naturais , Clima Desértico , Incêndios , Solo , Vento , Ecossistema , Monitoramento Ambiental , Plantas , Fatores de Tempo
3.
Ecol Appl ; 2(3): 285-297, 1992 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27759256

RESUMO

Agroecosystems can become contaminated by atmospherically released radionuclides. The subsequent concentrations of radionuclides in foods are dependent on numerous environmental, physiological, and management factors. We compared four approaches for estimating the relative importance of several of these factors in determining concentrations of 131 I and 137 Cs in milk. A series of sensitivity analyses with Monte Carlo and full-factorial sampling designs was conducted on the PATHWAY model, which simulates radionuclide transport through an agroecosystem. Sensitivity of time-integrated concentrations in milk was estimated as a function of the time of year that fallout was deposited and as a function of time following a spring deposition. The dominant parameters affecting time-integrated concentrations of 131 I in milk were the initial fraction of radionuclides deposited on vegetation, timing and amount of pasture consumption, and the production rate of milk. For time-integrated concentrations of the longer-lived 137 Cs in milk, resuspension was a dominant parameter and pasture use was less important. The sampling designs were compared by ranking the parameters to which the model output is sensitive. The three sampling designs based on parameter variances produced sets of ranks that were similar to each other but differed from the ranking produced by the sampling design based on parameter magnitude. The results indicate which data are most crucial for real-time calculations following an accident and how subsequent dose from ingestion can be most effectively reduced, provide insight into model behavior, and help prioritize future research. This paper demonstrates the importance of variance-based sensitivity analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...