Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr HIV Res ; 21(6): 347-353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058095

RESUMO

OBJECTIVE: The study aimed to compare the prevalence of surveillance HIV drug resistance mutations (SDRMs) across the main federal districts of Russia. METHODS: A pooled analysis was conducted to examine data on HIV primary drug resistance (HIV PrimDR). The analysis was based on published results primarily from Russian regional clinical and scientific laboratories, covering a span of 20 years. RESULTS: The findings indicate that three surveyed regions, namely Central, Far Eastern, and Volga, exhibit a low level of HIV PrimDR prevalence (not exceeding 5%), and this prevalence does not show a tendency to increase. In contrast, three major regions, namely Northwestern, Southern, and Siberian, demonstrate a significant and progressive increase in HIV PrimDR prevalence, with recent values surpassing 10%. CONCLUSION: Consequently, it was concluded that a change in the HIV treatment strategy in these regions is imperative, emphasizing the need to expedite the transition to the utilization of secondgeneration integrase inhibitors.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Mutação , Federação Russa/epidemiologia , Prevalência , Farmacorresistência Viral/genética , Genótipo
2.
Viruses ; 15(4)2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112971

RESUMO

In Russia, antiretroviral therapy (ART) coverage has significantly increased, which, in the absence of routine genotyping testing, could lead to an increase in HIV drug resistance (DR). The aim of this study was to investigate the patterns and temporal trends in HIV DR as well as the prevalence of genetic variants in treatment-naïve patients from 2006 to 2022, using data from the Russian database (4481 protease and reverse transcriptase and 844 integrase gene sequences). HIV genetic variants, and DR and DR mutations (DRMs) were determined using the Stanford Database. The analysis showed high viral diversity, with the predominance of A6 (78.4%), which was the most common in all transmission risk groups. The overall prevalence of surveillance DRMs (SDRMs) was 5.4%, and it reached 10.0% in 2022. Most patients harbored NNRTI SDRMs (3.3%). The prevalence of SDRMs was highest in the Ural (7.9%). Male gender and the CRF63_02A6 variant were association factors with SDRMs. The overall prevalence of DR was 12.7% and increased over time, primarily due to NNRTIs. Because baseline HIV genotyping is unavailable in Russia, it is necessary to conduct surveillance of HIV DR due to the increased ART coverage and DR prevalence. Centralized collection and unified analysis of all received genotypes in the national database can help in understanding the patterns and trends in DR to improve treatment protocols and increase the effectiveness of ART. Moreover, using the national database can help identify regions or transmission risk groups with a high prevalence of HIV DR for epidemiological measures to prevent the spread of HIV DR in the country.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Masculino , HIV-1/genética , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Mutação , Genótipo , Prevalência , Federação Russa/epidemiologia
3.
Viruses ; 14(11)2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36366418

RESUMO

The increased antiretroviral therapy (ART) coverage of patients in the absence of routine genotyping tests and in the context of active labor migration highlight the importance of HIV-1 drug resistance (DR) surveillance in Armenia. We conducted a two-phase pretreatment DR (PDR) study in 2017-2018 (phase I; 120 patients) and 2020-2021 (phase II; 133 patients) according to the WHO-approved protocol. The analysis of HIV-1 genetic variants showed high degrees of viral diversity, with the predominance of A6. The prevalence of any PDR was 9.2% in phase I and 7.5% in phase II. PDR to protease inhibitors was found only in 0.8% in phase II. PDR to efavirenz and nevirapine was found among 5.0% and 6.7% of patients in phase I, and 6.0% and 6.8% of patients in phase II, respectively. The prevalence of PDR to nucleoside reverse-transcriptase inhibitors decreased from 5.0% in phase I to 0.8% in phase II. In addition, we identified risk factors associated with the emergence of DR-male, MSM, subtype B, and residence in or around the capital of Armenia-and showed the active spread of HIV-1 among MSM in transmission clusters, i.e., harboring DR, which requires the immediate attention of public health policymakers for the prevention of HIV-1 DR spread in the country.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Soropositividade para HIV , HIV-1 , Minorias Sexuais e de Gênero , Humanos , Masculino , Gravidez , Feminino , HIV-1/genética , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral/genética , Prevalência , Homossexualidade Masculina , Armênia/epidemiologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Organização Mundial da Saúde , Genótipo , Mutação
4.
Virus Evol ; 8(1): veac044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35775027

RESUMO

The HIV/AIDS epidemic in Russia is growing, with approximately 100,000 people infected annually. Molecular epidemiology can provide insight into the structure and dynamics of the epidemic. However, its applicability in Russia is limited by the weakness of genetic surveillance, as viral genetic data are only available for <1 per cent of cases. Here, we provide a detailed description of the HIV-1 epidemic for one geographic region of Russia, Oryol Oblast, by collecting and sequencing viral samples from about a third of its known HIV-positive population (768 out of 2,157 patients). We identify multiple introductions of HIV-1 into Oryol Oblast, resulting in eighty-two transmission lineages that together comprise 66 per cent of the samples. Most introductions are of subtype A (315/332), the predominant HIV-1 subtype in Russia, followed by CRF63 and subtype B. Bayesian analysis estimates the effective reproduction number Re for subtype A at 2.8 [1.7-4.4], in line with a growing epidemic. The frequency of CRF63 has been growing more rapidly, with the median Re of 11.8 [4.6-28.7], in agreement with recent reports of this variant rising in frequency in some regions of Russia. In contrast to the patterns described previously in European and North American countries, we see no overrepresentation of males in transmission lineages; meanwhile, injecting drug users are overrepresented in transmission lineages. This likely reflects the structure of the HIV-1 epidemic in Russia dominated by heterosexual and, to a smaller extent, people who inject drugs transmission. Samples attributed to men who have sex with men (MSM) transmission are associated with subtype B and are less prevalent than expected from the male-to-female ratio for this subtype, suggesting underreporting of the MSM transmission route. Together, our results provide a high-resolution description of the HIV-1 epidemic in Oryol Oblast, Russia, characterized by frequent interregional transmission, rapid growth of the epidemic, and rapid displacement of subtype A with the recombinant CRF63 variant.

5.
PLoS One ; 17(1): e0257731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061671

RESUMO

BACKGROUND: Eastern Europe and Central Asia (EECA) is one of the regions where the HIV epidemic continues to grow at a concerning rate. Antiretroviral therapy (ART) coverage in EECA countries has significantly increased during the last decade, which can lead to an increase in the risk of emergence, transmission, and spread of HIV variants with drug resistance (DR) that cannot be controlled. Because HIV genotyping cannot be performed in these countries, data about HIV DR are limited or unavailable. OBJECTIVES: To monitor circulating HIV-1 genetic variants, assess the prevalence of HIV DR among patients starting antiretroviral therapy, and reveal potential transmission clusters among patients in six EECA countries: Armenia, Azerbaijan, Belarus, Russia, Tajikistan, and Uzbekistan. MATERIALS AND METHODS: We analyzed 1071 HIV-1 pol-gene fragment sequences (2253-3369 bp) from patients who were initiating or reinitiating first-line ART in six EECA counties, i.e., Armenia (n = 120), Azerbaijan (n = 96), Belarus (n = 158), Russia (n = 465), Tajikistan (n = 54), and Uzbekistan (n = 178), between 2017 and 2019. HIV Pretreatment DR (PDR) and drug resistance mutation (DRM) prevalence was estimated using the Stanford HIV Resistance Database. The PDR level was interpreted according to the WHO standard PDR survey protocols. HIV-1 subtypes were determined using the Stanford HIV Resistance Database and subsequently confirmed by phylogenetic analysis. Transmission clusters were determined using Cluster Picker. RESULTS: Analyses of HIV subtypes showed that EECA, in general, has the same HIV genetic variants of sub-subtype A6, CRF63_02A1, and subtype B, with different frequencies and representation for each country. The prevalence of PDR to any drug class was 2.8% in Uzbekistan, 4.2% in Azerbaijan, 4.5% in Russia, 9.2% in Armenia, 13.9% in Belarus, and 16.7% in Tajikistan. PDR to protease inhibitors (PIs) was not detected in any country. PDR to nucleoside reverse-transcriptase inhibitors (NRTIs) was not detected among patients in Azerbaijan, and was relatively low in other countries, with the highest prevalence in Tajikistan (5.6%). The prevalence of PDR to nonnucleoside reverse-transcriptase inhibitors (NNRTIs) was the lowest in Uzbekistan (2.8%) and reached 11.1% and 11.4% in Tajikistan and Belarus, respectively. Genetic transmission network analyses identified 226/1071 (21.1%) linked individuals, forming 93 transmission clusters mainly containing two or three sequences. We found that the time since HIV diagnosis in clustered patients was significantly shorter than that in unclustered patients (1.26 years vs 2.74 years). Additionally, the K103N/S mutation was mainly observed in clustered sequences (6.2% vs 2.8%). CONCLUSIONS: Our study demonstrated different PDR prevalence rates and DR dynamics in six EECA countries, with worrying levels of PDR in Tajikistan and Belarus, where prevalence exceeded the 10% threshold recommended by the WHO for immediate public health action. Because DR testing for clinical purposes is not common in EECA, it is currently extremely important to conduct surveillance of HIV DR in EECA due to the increased ART coverage in this region.


Assuntos
HIV-1
6.
Viruses ; 12(8)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752001

RESUMO

The increasing use of the integrase strand transfer inhibitor (INSTI) class for the treatment of HIV-infection has pointed to the importance of analyzing the features of HIV-1 subtypes for an improved understanding of viral genetic variability in the occurrence of drug resistance (DR). In this study, we have described the prevalence of INSTI DR in a Russian cohort and the genetic features of HIV-1 integrase sub-subtype A6. We included 408 HIV infected patients who were not exposed to INSTI. Drug resistance mutations (DRMs) were detected among 1.3% of ART-naïve patients and among 2.7% of INSTI-naïve patients. The prevalence of 12 polymorphic mutations was significantly different between sub-subtypes A6 and A1. Analysis of the genetic barriers determined two positions in which subtype A (A1 and A6) showed a higher genetic barrier (G140C and V151I) compared with subtype B, and one position in which subtypes A1 and B displayed a higher genetic barrier (L74M and L74I) than sub-subtype A6. Additionally, we confirmed that the L74I mutation was selected at the early stage of the epidemic and subsequently spread as a founder effect in Russia. Our data have added to the overall understanding of the genetic features of sub-subtype A6 in the context of drug resistance.


Assuntos
Farmacorresistência Viral/genética , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/genética , HIV-1/efeitos dos fármacos , Adulto , Feminino , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Integrase de HIV/classificação , HIV-1/enzimologia , Humanos , Masculino , Mutação , Filogenia , Polimorfismo Genético , Prevalência , Federação Russa , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...