Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 151(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095282

RESUMO

Cajal-Retzius (CR) cells are a transient neuron type that populate the postnatal hippocampus. To understand how the persistence of CR cells influences the maturation of hippocampal circuits, we combined a specific transgenic mouse line with viral vector injection to selectively ablate CR cells from the postnatal hippocampus. We observed layer-specific changes in the dendritic complexity and spine density of CA1 pyramidal cells. In addition, transcriptomic analysis highlighted significant changes in the expression of synapse-related genes across development. Finally, we were able to identify significant changes in the expression levels of latrophilin 2, a postsynaptic guidance molecule known for its role in the entorhinal-hippocampal connectivity. These findings were supported by changes in the synaptic proteomic content in CA1 stratum lacunosum-moleculare. Our results reveal a crucial role for CR cells in the establishment of the hippocampal network.


Assuntos
Hipocampo , Proteômica , Camundongos , Animais , Hipocampo/metabolismo , Neurônios/metabolismo , Células Piramidais , Camundongos Transgênicos
2.
Brain Dev ; 44(2): 148-152, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34579981

RESUMO

INTRODUCTION: Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by mutations in TCF4. Seizures have been found to vary among patients with PTHS. We report the case of a PTHS patient with a novel missense mutation in the gene TCF4, presenting with two types of early epileptic encephalopathy. CASE REPORT: The patient was a Japanese boy. His first seizure was reported at 17 days of age, with twitching of the left eyelid and tonic-clonic seizures on either side of his body. An ictal electroencephalogram (EEG) showed epileptic discharges arising independently from both hemispheres, occasionally resembling migrating partial seizures of infancy (MPSI) that migrated from one side to the other. Brain magnetic resonance imaging revealed agenesis of the corpus callosum. His facial characteristics included a distinctive upper lip and thickened helices. His seizures were refractory, and psychomotor development was severely delayed. At the age of 10 months, he developed West syndrome with spasms and hypsarrhythmia. After being prescribed topiramate (TPM), his seizures and EEG abnormalities dramatically improved. Also, psychomotor development progressed. Whole-exome sequencing revealed a novel de novo missense mutation in exon 18 (NM_001083962.2:c.1718A > T, p.(Asn573Ile)), corresponding to the basic region of the basic helix-loop-helix domain, which may be a causative gene for epileptic encephalopathy. CONCLUSIONS: To our knowledge, this is the first report of a patient with PTHS treated with TPM, who presented with both MPSI as well as West syndrome. This may help provide new insights regarding the phenotypes caused by mutations in TCF4.


Assuntos
Fácies , Hiperventilação , Deficiência Intelectual , Espasmos Infantis , Fator de Transcrição 4/genética , Anticonvulsivantes/farmacologia , Humanos , Hiperventilação/diagnóstico , Hiperventilação/tratamento farmacológico , Hiperventilação/genética , Hiperventilação/fisiopatologia , Lactente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Mutação de Sentido Incorreto , Espasmos Infantis/diagnóstico , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/genética , Espasmos Infantis/fisiopatologia , Topiramato/farmacologia
3.
Front Neural Circuits ; 15: 781928, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819840

RESUMO

The wide diversity of cortical inhibitory neuron types populating the cortex allows the assembly of diverse microcircuits and endows these circuits with different computational properties. Thus, characterizing neuronal diversity is fundamental to describe the building blocks of cortical microcircuits and probe their function. To this purpose, the mouse has emerged as a powerful tool to genetically label and manipulate specific inhibitory cell-types in the mammalian brain. Among these cell-types, the parvalbumin-expressing interneuron type (PV-INs) is perhaps the most characterized. Several mouse lines have been generated to target PV-INs. Among these mouse lines, the PV-IRES-Cre lines is the most widely used and demonstrated a high specificity and efficiency in targeting PV-INs in different cortical areas. However, a characterization of the performance across cortical regions is still missing. Here we show that the PV-IRES-Cre mouse line labels only a fraction of PV immunoreactive neurons in perirhinal cortex and other association areas. Our results point to a yet uncharacterized diversity within the PV-INs and emphasize the need to characterize these tools in specific cortical areas.


Assuntos
Parvalbuminas , Córtex Perirrinal , Animais , Integrases , Interneurônios/metabolismo , Camundongos , Parvalbuminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...