Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 57(6): 2050-2067, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30270980

RESUMO

Carbon-supported mono- and bimetallic catalysts prepared via incipient wetness impregnation were systematically studied in aqueous-phase reforming (APR) of xylitol aiming at hydrogen production from biomass. The catalytic performance of several VIII group metals and their combinations, such as Pt, Ni, Pt-Ni, Re, Pt-Re, Ru, Pt-Ru, and Pt-Co, was compared for xylitol APR in a fixed-bed reactor at 225 °C and 29.7 bar (N2). Ni/C, Ru/C, and Re/C catalysts displayed significantly lower activity compared to others. Activity and selectivity to H2 of bimetallic Pt-Ni/C, Pt-Co/C, and Pt-Ru/C catalysts were close to that of Pt/C. Pt-Re/C catalyst showed an outstanding performance which was accompanied by a shift of the reaction pathways to the alkane formation and thereby lower hydrogen selectivity. Addition of the second metal to Pt was not found to be beneficial for hydrogen production, thus leaving Pt/C as the optimum carbon-supported catalyst.

2.
ChemSusChem ; 3(6): 708-18, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20512804

RESUMO

Aqueous phase reforming of sorbitol over Pt supported on an alumina catalyst is investigated, in order to identify the intermediates involved in the transformation of the initial feed. Parameters such as the sorbitol feed rate and temperature are studied. To identify the intermediates, an approach based on analysis of the gas and liquid phases as well as the total carbon content was developed. According to analysis by gas chromatography combined with mass spectrometry of volatile substances collected with solid-phase microextraction, over 260 compounds are involved in the transformation of sorbitol. Of these, 50 of the major products are identified with high reliability. It is shown that a great variety of compounds, bearing different functionalities, form part of the reaction network. The formation of the majority of identified compounds is explained and a reaction network for the formation of sorbitol and intermediate molecules transformation is proposed.


Assuntos
Biocombustíveis , Sorbitol/química , Biomassa , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...