Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Synaptic Neurosci ; 15: 1198159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325697

RESUMO

The efficiency of neocortical information processing critically depends on the balance between the glutamatergic (excitatory, E) and GABAergic (inhibitory, I) synaptic transmission. A transient imbalance of the E/I-ratio during early development might lead to neuropsychiatric disorders later in life. The transgenic glutamic acid decarboxylase 67-green fluorescent protein (GAD67-GFP) mouse line (KI) was developed to selectively visualize GABAergic interneurons in the CNS. However, haplodeficiency of the GAD67 enzyme, the main GABA synthetizing enzyme in the brain, temporarily leads to a low GABA level in the developing brain of these animals. However, KI mice did not demonstrate any epileptic activity and only few and mild behavioral deficits. In the present study we investigated how the developing somatosensory cortex of KI-mice compensates the reduced GABA level to prevent brain hyperexcitability. Whole-cell patch clamp recordings from layer 2/3 pyramidal neurons at P14 and at P21 revealed a reduced frequency of miniature inhibitory postsynaptic currents (mIPSCs) in KI mice without any change in amplitude or kinetics. Interestingly, mEPSC frequencies were also decreased, while the E/I-ratio was nevertheless shifted toward excitation. Surprisingly, multi-electrode-recordings (MEA) from acute slices revealed a decreased spontaneous neuronal network activity in KI mice compared to wild-type (WT) littermates, pointing to a compensatory mechanism that prevents hyperexcitability. Blockade of GABAB receptors (GABABRs) with CGP55845 strongly increased the frequency of mEPSCs in KI, but failed to affect mIPSCs in any genotype or age. It also induced a membrane depolarization in P14 KI, but not in P21 KI or WT mice. MEA recordings in presence of CGP55845 revealed comparable levels of network activity in both genotypes, indicating that tonically activated GABABRs balance neuronal activity in P14 KI cortex despite the reduced GABA levels. Blockade of GABA transporter 3 (GAT-3) reproduced the CGP55845 effects suggesting that tonic activation of GABABRs is mediated by ambient GABA released via GAT-3 operating in reverse mode. We conclude that GAT-3-mediated GABA release leads to tonic activation of both pre- and postsynaptic GABABRs and restricts neuronal excitability in the developing cortex to compensate for reduced neuronal GABA synthesis. Since GAT-3 is predominantly located in astrocytes, GAD67 haplodeficiency may potentially stimulate astrocytic GABA synthesis through GAD67-independent pathways.

2.
Transl Psychiatry ; 13(1): 152, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149657

RESUMO

Anandamide (AEA) is an endogenous ligand of the cannabinoid CB1 and CB2 receptors, being a component of the endocannabinoid signaling system, which supports the maintenance or regaining of neural homeostasis upon internal and external challenges. AEA is thought to play a protective role against the development of pathological states after prolonged stress exposure, including depression and generalized anxiety disorder. Here, we used the chronic social defeat (CSD) stress as an ethologically valid model of chronic stress in male mice. We characterized a genetically modified mouse line where AEA signaling was reduced by deletion of the gene encoding the AEA synthesizing enzyme N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) specifically in neurons activated at the time of CSD stress. One week after the stress, the phenotype was assessed in behavioral tests and by molecular analyses. We found that NAPE-PLD deficiency in neurons activated during the last three days of CSD stress led to an increased anxiety-like behavior. Investigating the molecular mechanisms underlying this phenotype may suggest three main altered pathways to be affected: (i) desensitization of the negative feedback loop of the hypothalamic-pituitary-adrenal axis, (ii) disinhibition of the amygdala by the prefrontal cortex, and (iii) altered neuroplasticity in the hippocampus and prefrontal cortex.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Masculino , Camundongos , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Endocanabinoides/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Transdução de Sinais
3.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555501

RESUMO

Astrocytes are the most abundant glial cells in the central nervous system (CNS) mediating a variety of homeostatic functions, such as spatial K+ buffering or neurotransmitter reuptake. In addition, astrocytes are capable of releasing several biologically active substances, including glutamate and GABA. Astrocyte-mediated GABA release has been a matter of debate because the expression level of the main GABA synthesizing enzyme glutamate decarboxylase is quite low in astrocytes, suggesting that low intracellular GABA concentration ([GABA]i) might be insufficient to support a non-vesicular GABA release. However, recent studies demonstrated that, at least in some regions of the CNS, [GABA]i in astrocytes might reach several millimoles both under physiological and especially pathophysiological conditions, thereby enabling GABA release from astrocytes via GABA-permeable anion channels and/or via GABA transporters operating in reverse mode. In this review, we summarize experimental data supporting both forms of GABA release from astrocytes in health and disease, paying special attention to possible feedback mechanisms that might govern the fine-tuning of astrocytic GABA release and, in turn, the tonic GABAA receptor-mediated inhibition in the CNS.


Assuntos
Astrócitos , Ácido gama-Aminobutírico , Astrócitos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neuroglia/metabolismo , Receptores de GABA-A/metabolismo , Ácido Glutâmico/metabolismo
4.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628556

RESUMO

Unrelated genetic mutations can lead to convergent manifestations of neurological disorders with similar behavioral phenotypes. Experimental data frequently show a lack of dramatic changes in neuroanatomy, indicating that the key cause of symptoms might arise from impairment in the communication between neurons. A transient imbalance between excitatory (glutamatergic) and inhibitory (GABAergic) synaptic transmission (the E/I balance) during early development is generally considered to underlie the development of several neurological disorders in adults. However, the E/I ratio is a multidimensional variable. Synaptic contacts are highly dynamic and the actual strength of synaptic projections is determined from the balance between synaptogenesis and synaptic elimination. During development, relatively slow postsynaptic receptors are replaced by fast ones that allow for fast stimulus-locked excitation/inhibition. Using the binomial model of synaptic transmission allows for the reassessing of experimental data from different mouse models, showing that a transient E/I shift is frequently counterbalanced by additional pre- and/or postsynaptic changes. Such changes-for instance, the slowing down of postsynaptic currents by means of immature postsynaptic receptors-stabilize the average synaptic strength, but impair the timing of information flow. Compensatory processes and/or astrocytic signaling may represent possible targets for medical treatments of different disorders directed to rescue the proper information processing.


Assuntos
Neurônios , Transmissão Sináptica , Animais , Astrócitos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Neurônios/fisiologia , Transdução de Sinais , Transmissão Sináptica/fisiologia
5.
Pflugers Arch ; 473(8): 1261-1271, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34279736

RESUMO

The TSC1 and TSC2 tumor suppressor genes control the activity of mechanistic target of rapamycin (mTOR) pathway. Elevated activity of this pathway in Tsc2+/- mouse model leads to reduction of postsynaptic GABAB receptor-mediated inhibition and hyperexcitability in the medial prefrontal cortex (mPFC). In this study, we asked whether presynaptic GABAB receptors (GABABRs) can compensate this shift of hyperexcitability. Experiments were performed in brain slices from adolescent wild-type (WT) and Tsc2+/- mice. Miniature and spontaneous postsynaptic currents (m/sPSCs) were recorded from layer 2/3 pyramidal neurons in mPFC using patch-clamp technique using a Cs+-based intrapipette solution. Presynaptic GABABRs were activated by baclofen (10 µM) or blocked by CGP55845 (1 µM). Independent on genotype, GABABR modulators bidirectionally change miniature excitatory postsynaptic current (mEPSC) frequency by about 10%, indicating presynaptic GABABR-mediated effects on glutamatergic transmission are comparable in both genotypes. In contrast, frequencies of both mIPSCs and sIPCSs were suppressed by baclofen stronger in Tsc2+/- neurons than in WT ones, whereas CGP55845 significantly increased (m/s)IPSC frequencies only in WT cells. Effects of baclofen and CGP55845 on the amplitudes of evoked (e)IPSCs confirmed these observations. These data indicate (1) that GABAergic synapses are inhibited by ambient GABA in WT but not in Tsc2+/- slices, and (2) that baclofen shifts the E/I ratio, determined as the ratio of (m/s)EPSC frequency to (m/s)IPSC frequency, towards excitation only in Tsc2+/- cells. This excitatory presynaptic GABABR-mediated action has to be taken into account for a possible medication of mental disorders using baclofen.


Assuntos
Neurônios GABAérgicos/metabolismo , Córtex Pré-Frontal/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de GABA-B/metabolismo , Animais , Camundongos , Técnicas de Patch-Clamp , Proteína 2 do Complexo Esclerose Tuberosa/genética
6.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298906

RESUMO

Mutations in TSC1 or TSC2 genes are linked to alterations in neuronal function which ultimately lead to the development of a complex neurological phenotype. Here we review current research on the effects that reduction in TSC1 or TSC2 can produce on the developing neural network. A crucial feature of the disease pathophysiology appears to be an early deviation from typical neurodevelopment, in the form of structural abnormalities. Epileptic seizures are one of the primary early manifestation of the disease in the CNS, followed by intellectual deficits and autism spectrum disorders (ASD). Research using mouse models suggests that morphological brain alterations might arise from the interaction of different cellular types, and hyperexcitability in the early postnatal period might be transient. Moreover, the increased excitation-to-inhibition ratio might represent a transient compensatory adjustment to stabilize the developing network rather than a primary factor for the development of ASD symptoms. The inhomogeneous results suggest region-specificity as well as an evolving picture of functional alterations along development. Furthermore, ASD symptoms and epilepsy might originate from different but potentially overlapping mechanisms, which can explain recent observations obtained in patients. Potential treatment is determined not only by the type of medicament, but also by the time point of treatment.


Assuntos
Mutação/genética , Neurônios/fisiologia , Transmissão Sináptica/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Animais , Humanos
7.
Cereb Cortex ; 30(12): 6313-6324, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32705128

RESUMO

Loss-of-function mutation in one of the tumor suppressor genes TSC1 or TSC2 is associated with several neurological and psychiatric diseases, including autism spectrum disorders (ASDs). As an imbalance between excitatory and inhibitory neurotransmission, E/I ratio is believed to contribute to the development of these disorders, we investigated synaptic transmission during the first postnatal month using the Tsc2+/- mouse model. Electrophysiological recordings were performed in acute brain slices of medial prefrontal cortex. E/I ratio at postnatal day (P) 15-19 is increased in Tsc2+/- mice as compared with wildtype (WT). At P25-30, facilitated GABAergic transmission reduces E/I ratio to the WT level, but weakening of tonic GABAB receptor (GABABR)-mediated inhibition in Tsc2+/- mice leads to hyperexcitability both at single cell and neuronal network level. Short (1 h) preincubation of P25-30 Tsc2+/- slices with baclofen restores the GABABR-mediated inhibition and reduces network excitability. Interestingly, the same treatment at P15-19 leads to weakening of GABABR-mediated inhibition. We hypothesize that a dysfunction of tonic GABABR-mediated inhibition might contribute to the development of ASD symptoms and suggest that GABABR activation within an appropriate time window may be considered as a therapeutic target in ASD.


Assuntos
Haploinsuficiência , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de GABA-B/fisiologia , Animais , Camundongos Transgênicos , Transmissão Sináptica , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/fisiologia
8.
Neurosci Lett ; 732: 134913, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32482568

RESUMO

Myelination in the central nervous system depends on interactions between axons and oligodendrocyte precursor cells (OPCs). Action potentials in an axon can be followed by release of biologically active substances, like glutamate, which can instruct OPCs to start myelination. Myelin Basic Protein (MBP) is an "executive molecule of myelin" required for the formation of compact myelin. As cells of the oligodendrocyte lineage (OLCs) are capable of producing MBP in pure oligodendrocyte cultures, i.e. without neurons, we investigated Ca2+ signaling in developing OLCs in cultures. We show that spontaneous Ca2+ transients (CTs) occur at very low frequency in both bipolar OPCs and mature oligodendrocytes. In contrast immature OLCs (imOLCs), cells with several thick processes, demonstrate a relatively high frequency of CTs. Moreover, CT frequency in imOLC processes is much higher as compared with the somatic CT frequency. Somatic CTs are almost completely blocked by thapsigargin, an antagonist of sarco-(endo-) plasmic reticulum Ca2+ ATPase, and ryanodine, a blocker of ryanodine receptors, indicating an involvement of Ca2+ release from the endoplasmic reticulum. Ryanodine strongly reduces CT frequency in imOLC processes. Ouabain, an antagonist of Na+, K+-ATPase (NKA), applied at low concentration increases CT frequency, while KB-R7943, a blocker of reverse mode of Na+, Ca2+ exchanger (NCX), decreases CT frequency. We suggest that local RyR-NCX-(NKA?) interaction might underlie the generation of CTs in imOLC in the absence of neurons, and this activity influences oligodendrocyte maturation.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Sódio/metabolismo , Animais , Células Cultivadas , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Ouabaína/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia
9.
Mol Psychiatry ; 25(11): 3108, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30602735

RESUMO

Following the publication of this article the authors noted that Torfi Sigurdsson's name was misspelled. Instead of Sigrudsson it should be Sigurdsson. The PDF and HTML versions of the paper have been modified accordingly. The authors would like to apologise for this error and the inconvenience this may have caused.

10.
Front Neuroanat ; 12: 97, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487739

RESUMO

During early development the structure and function of the cerebral cortex is critically organized by subplate neurons (SPNs), a mostly transient population of glutamatergic and GABAergic neurons located below the cortical plate. At the molecular and morphological level SPNs represent a rather diverse population of cells expressing a variety of genetic markers and revealing different axonal-dendritic morphologies. Electrophysiologically SPNs are characterized by their rather mature intrinsic membrane properties and firing patterns. They are connected via electrical and chemical synapses to local and remote neurons, e.g., thalamic relay neurons forming the first thalamocortical input to the cerebral cortex. Therefore SPNs are robustly activated at pre- and perinatal stages by the sensory periphery. Although SPNs play pivotal roles in early neocortical activity, development and plasticity, they mostly disappear by programmed cell death during further maturation. On the one hand, SPNs may be selectively vulnerable to hypoxia-ischemia contributing to brain damage, on the other hand there is some evidence that enhanced survival rates or alterations in SPN distribution may contribute to the etiology of neurological or psychiatric disorders. This review aims to give a comprehensive and up-to-date overview on the many functions of SPNs during early physiological and pathophysiological development of the cerebral cortex.

11.
Cell Calcium ; 73: 1-10, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880193

RESUMO

Oligodendrocytes in the CNS myelinate neuronal axons, facilitating rapid propagation of action potentials. Myelin basic protein (MBP) is an essential component of myelin and its absence results in severe hypomyelination. In oligodendrocyte lineage cell (OLC) monocultures MBP synthesis starts at DIV4. Ouabain (10 nM), a Na+,K+-ATPase (NKA) blocker, stimulates MBP synthesis. As OLCs express the α2 isoform of NKA (α2-NKA) that has a high affinity for ouabain, we hypothesized that α2-NKA mediates this effect. Knockdown of α2-NKA with small interfering (si)RNA (α2-siRNA) significantly potentiated MBP synthesis at DIV4 and 5. This effect was completely blocked by KB-R7943 (1 µM), a Na+,Ca2+ exchanger (NCX) antagonist. α2-NKA ablation increased the frequency of NCX-mediated spontaneous Ca2+ transients ([Ca2+]t) at DIV4, whereas in control OLC cultures comparable frequency of [Ca2+]t was observed at DIV5. At DIV6 almost no [Ca2+]t were observed either in control or in α2-siRNA-treated cultures. Immunocytochemical analyses showed that α2-NKA co-localizes with MBP in proximal processes of immature OLCs but is only weakly present in MBP-enriched membrane sheets. Knockdown of α2-NKA in cortical slice cultures did not change MBP levels but reduced co-localization of neurofilament- and MBP-positive compartments. We conclude that α2-NKA activity in OLCs affects NCX-mediated [Ca2+]t and the onset of MBP synthesis. We suggest therefore that neuronal activity, presumably in form of local extracellular [K+] changes, might locally influence NCX-mediated [Ca2+]t in OLC processes thus triggering local MBP synthesis in the vicinity of an active axon.


Assuntos
Linhagem da Célula/fisiologia , Proteína Básica da Mielina/biossíntese , Oligodendroglia/metabolismo , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ouabaína/farmacologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Tioureia/análogos & derivados , Tioureia/farmacologia
12.
Curr Opin Neurobiol ; 53: 29-34, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29738998

RESUMO

This review provides an overview on the development of the rodent whisker-to-barrel cortex system from late embryonic stage to the end of the first postnatal month. During this period the system shows a remarkable transition from a mostly genetic-molecular driven generation of crude connectivity, providing the template for activity-dependent structural and functional maturation and plasticity, to the manifestation of a complex behavioral repertoire including social interactions. Spontaneous and sensory-evoked activity is present in neonatal barrel cortex and control the generation of the cortical architecture. Half a century after its first description by Woolsey and van der Loos the whisker-to-barrel cortex system with its unique and clear topographic organization still offers the exceptional opportunity to study sensory processing and complex behavior.


Assuntos
Comportamento Animal/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Córtex Somatossensorial/crescimento & desenvolvimento , Percepção do Tato/fisiologia , Vibrissas/fisiologia , Animais
13.
Mol Psychiatry ; 23(8): 1699-1710, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29743582

RESUMO

Lysophosphatidic acid (LPA) is a synaptic phospholipid, which regulates cortical excitation/inhibition (E/I) balance and controls sensory information processing in mice and man. Altered synaptic LPA signaling was shown to be associated with psychiatric disorders. Here, we show that the LPA-synthesizing enzyme autotaxin (ATX) is expressed in the astrocytic compartment of excitatory synapses and modulates glutamatergic transmission. In astrocytes, ATX is sorted toward fine astrocytic processes and transported to excitatory but not inhibitory synapses. This ATX sorting, as well as the enzymatic activity of astrocyte-derived ATX are dynamically regulated by neuronal activity via astrocytic glutamate receptors. Pharmacological and genetic ATX inhibition both rescued schizophrenia-related hyperexcitability syndromes caused by altered bioactive lipid signaling in two genetic mouse models for psychiatric disorders. Interestingly, ATX inhibition did not affect naive animals. However, as our data suggested that pharmacological ATX inhibition is a general method to reverse cortical excitability, we applied ATX inhibition in a ketamine model of schizophrenia and rescued thereby the electrophysiological and behavioral schizophrenia-like phenotype. Our data show that astrocytic ATX is a novel modulator of glutamatergic transmission and that targeting ATX might be a versatile strategy for a novel drug therapy to treat cortical hyperexcitability in psychiatric disorders.


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Córtex Cerebral/efeitos dos fármacos , Transtornos Mentais/tratamento farmacológico , Inibição Neural/efeitos dos fármacos , Diester Fosfórico Hidrolases/metabolismo , Sinapses/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Humanos , Ketamina , Lisofosfolipídeos/farmacologia , Transtornos Mentais/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia , Diester Fosfórico Hidrolases/genética , Proteoglicanas/genética , Proteoglicanas/metabolismo , Psicotrópicos/farmacologia , Sinapses/fisiologia , Técnicas de Cultura de Tecidos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
14.
Cereb Cortex ; 28(8): 2873-2886, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106499

RESUMO

Neuroligin-4 (Nlgn4) is a cell adhesion protein that regulates synapse organization and function. Mutations in human NLGN4 are among the causes of autism spectrum disorders. In mouse, Nlgn4 knockout (KO) perturbs GABAergic synaptic transmission and oscillatory activity in hippocampus, and causes social interaction deficits. The complex profile of cellular and circuit changes that are caused by Nlgn4-KO is still only partly understood. Using Nlgn4-KO mice, we found that Nlgn4-KO increases the power in the alpha frequency band of spontaneous network activity in the barrel cortex under urethane anesthesia in vivo. Nlgn4-KO did not affect single-whisker-induced local field potentials, but suppressed the late evoked multiunit activity in vivo. Although Nlgn4-KO did not affect evoked EPSCs in layer 4 (L4) spiny stellate cells in acute thalamocortical slices elicited by electrical stimulation of thalamocortical inputs, it caused a lower frequency of both miniature (m) IPSCs and mEPSCs, and a decrease in the number of readily releasable vesicles at GABAergic and glutamatergic connections, weakening both excitatory and inhibitory transmission. However, Nlgn4 deficit strongly suppresses glutamatergic activity, shifting the excitation-inhibition balance to inhibition. We conclude that Nlgn4-KO does not influence the incoming whisker-mediated sensory information to the barrel cortex, but modifies intracortical information processing.


Assuntos
Moléculas de Adesão Celular Neuronais/deficiência , Potenciais Evocados/genética , Neocórtex/patologia , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Vias Aferentes/patologia , Vias Aferentes/fisiopatologia , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular Neuronais/genética , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Neocórtex/crescimento & desenvolvimento , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/patologia , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Vibrissas/inervação , Imagens com Corantes Sensíveis à Voltagem
15.
Front Cell Neurosci ; 11: 379, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238291

RESUMO

Animal and human studies revealed that patterned neuronal activity is an inherent feature of developing nervous systems. This review summarizes our current knowledge about the mechanisms generating early electrical activity patterns and their impact on structural and functional development of the cerebral cortex. All neocortical areas display distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, intermittent spontaneous activity is synchronized within small neuronal networks, becoming more complex with further development. This transition is accompanied by a gradual shift from electrical to chemical synaptic transmission, with a particular role of non-synaptic tonic currents before the onset of phasic synaptic activity. In this review article we first describe functional impacts of classical neurotransmitters (GABA, glutamate) and modulatory systems (e.g., acetylcholine, ACh) on early neuronal activities in the neocortex with special emphasis on electrical synapses, nonsynaptic and synaptic currents. Early neuronal activity influences probably all developmental processes and is crucial for the proper formation of neuronal circuits. In the second part of our review, we illustrate how specific activity patterns might interfere with distinct neurodevelopmental processes like proliferation, migration, axonal and dendritic sprouting, synapse formation and neurotransmitter specification. Finally, we present evidence that transient alterations in neuronal activity during restricted perinatal periods can lead to persistent changes in functional connectivity and therefore might underlie the manifestation of neurological and neuropsychiatric diseases.

16.
Cereb Cortex ; 27(1): 131-145, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27909001

RESUMO

Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous activity affected the entire entorhinal cortical network and thus led to reduced overall axon fiber numbers in the mature perforant path that is known to be important for specific memory functions. Our data show that precise regulation of early cortical activity by bioactive lipids is of critical importance for proper circuit formation.


Assuntos
Axônios/fisiologia , Sinalização do Cálcio/fisiologia , Ácido Glutâmico/metabolismo , Redes e Vias Metabólicas/fisiologia , Crescimento Neuronal/fisiologia , Fosfolipídeos/metabolismo , Transmissão Sináptica/fisiologia , Animais , Axônios/ultraestrutura , Cálcio/metabolismo , Células Cultivadas , Camundongos
17.
Cell Calcium ; 60(5): 322-330, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27417499

RESUMO

Myelination in the central nervous system depends on axon-oligodendrocyte precursor cell (OPC) interaction. We suggest that myelin synthesis may be influenced by [Na+]i and [Ca2+]i signaling in OPCs. Experiments were performed in mouse cultured OPCs at day in vitro (DIV) 2-6 or acute slices of the corpus callosum at postnatal days (P) 10-30. Synthesis of Myelin Basic Protein (MBP), an "executive molecule of myelin", was used as readout of myelination. Immunohistological data revealed that MBP synthesis in cultured OPCs starts around DIV4. Transient elevations of resting [Ca2+]i and [Na+]i levels were observed in the same temporal window (DIV4-5). At DIV4, but not at DIV2, both extracellular [K+] ([K+]e) elevation (+5mM) and partial Na+,K+-ATPase (NKA) inhibition elicited [Na+]i and [Ca2+]i transients. These responses were blocked with KB-R7943 (1µM), a blocker of Na+-Ca2+ exchanger (NCX), indicating an involvement of NCX which operates in reverse mode. Treatment of OPCs with culture medium containing elevated [K+] (+5mM, 24h) or ouabain (500nM, 24h) increased resting [Ca2+]i and facilitated MBP synthesis. Blockade of NCX with KB-R7943 (1µM, 12h) reduced resting [Ca2+]i and decreased MBP synthesis. Similar to the results obtained in OPC cultures, OPCs in acute callosal slices demonstrated an increase in resting [Ca2+]i and [Na+]i levels during development. NCX blockade induced [Ca2+]i and [Na+]i responses in OPCs at P20-30 but not at P10. We conclude that local [Na+]i and/or membrane potential changes can modulate Ca2+ influx through NCX and in turn MBP synthesis. Thus neuronal activity-induced changes in [K+]e may via NCX and NKA modulate myelination.


Assuntos
Cálcio/metabolismo , Proteína Básica da Mielina/biossíntese , Oligodendroglia/citologia , Transdução de Sinais , Sódio/metabolismo , Células-Tronco/metabolismo , Animais , Células Cultivadas , Íons/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
18.
Front Neural Circuits ; 10: 40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252626

RESUMO

Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits.


Assuntos
Neocórtex/crescimento & desenvolvimento , Rede Nervosa/crescimento & desenvolvimento , Neurônios/fisiologia , Animais , Humanos
19.
Cereb Cortex ; 26(7): 3260-72, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26980613

RESUMO

Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discrimination test, respectively. At P25-31, spontaneous network activity in the barrel cortex in vivo was higher in KO mice compared with WT littermates, but not at P16-19. At P16-19, sensory evoked cortical responses in vivo elicited by single whisker stimulation were comparable in KO and WT mice. In contrast, at P25-31 evoked responses were smaller in amplitude and longer in duration in WT animals, whereas KO mice revealed no such developmental changes. In thalamocortical slices from KO mice, spontaneous activity was increased already at P16-19, and glutamatergic thalamocortical inputs to Layer 4 spiny stellate neurons were potentiated. We conclude that genetic ablation of PRG-1 modulates already at P16-19 spontaneous and evoked excitability of the barrel cortex, including enhancement of thalamocortical glutamatergic inputs to Layer 4, which distorts sensory processing in adulthood.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Córtex Somatossensorial/metabolismo , Transmissão Sináptica/fisiologia , Tálamo/metabolismo , Vibrissas/fisiologia , Animais , Proteínas de Ligação a Calmodulina/genética , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Equilíbrio Postural/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Tálamo/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos , Percepção do Tato/fisiologia , Caminhada/fisiologia
20.
EMBO Mol Med ; 8(1): 25-38, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26671989

RESUMO

Loss of plasticity-related gene 1 (PRG-1), which regulates synaptic phospholipid signaling, leads to hyperexcitability via increased glutamate release altering excitation/inhibition (E/I) balance in cortical networks. A recently reported SNP in prg-1 (R345T/mutPRG-1) affects ~5 million European and US citizens in a monoallelic variant. Our studies show that this mutation leads to a loss-of-PRG-1 function at the synapse due to its inability to control lysophosphatidic acid (LPA) levels via a cellular uptake mechanism which appears to depend on proper glycosylation altered by this SNP. PRG-1(+/-) mice, which are animal correlates of human PRG-1(+/mut) carriers, showed an altered cortical network function and stress-related behavioral changes indicating altered resilience against psychiatric disorders. These could be reversed by modulation of phospholipid signaling via pharmacological inhibition of the LPA-synthesizing molecule autotaxin. In line, EEG recordings in a human population-based cohort revealed an E/I balance shift in monoallelic mutPRG-1 carriers and an impaired sensory gating, which is regarded as an endophenotype of stress-related mental disorders. Intervention into bioactive lipid signaling is thus a promising strategy to interfere with glutamate-dependent symptoms in psychiatric diseases.


Assuntos
Lisofosfolipídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Proteoglicanas/genética , Transdução de Sinais/genética , Sinapses/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Eletroencefalografia , Potenciais Evocados , Glicosilação , Células HEK293 , Humanos , Transtornos Mentais/genética , Transtornos Mentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Fosfopeptídeos/análise , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Fosforilação , Proteoglicanas/metabolismo , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/patologia , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...