Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(32): eado2849, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39110788

RESUMO

Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition, we generated a single-nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single-nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting, especially, activation of proinflammatory pathways. We further generated single-nucleus multiomic data from four human AKI samples including validation by genome-wide identification of nuclear factor κB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubular cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.


Assuntos
Injúria Renal Aguda , Epigênese Genética , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Camundongos , Humanos , Transcriptoma , NF-kappa B/metabolismo , NF-kappa B/genética , Modelos Animais de Doenças , Reprogramação Celular/genética , Proliferação de Células/genética , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo
2.
Kidney Int Rep ; 9(5): 1254-1264, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38707820

RESUMO

Introduction: A reduced salt intake is a vital lifestyle modification in the management of hypertension. Initiatives aimed at decreasing the intake of salt are based on the preference by humans for a salt taste. Salt intake behavior appears to be affected by the balance between attraction to a low salt taste and aversion to a high salt taste. However, aversion to a high salt taste has not yet been quantitively investigated in both healthy individuals and patients with chronic kidney disease (CKD). Methods: Assessments of gustatory and aversion thresholds for salt, bitter, sour, and sweet tastes were performed using a stimulant-impregnated test strip in healthy subjects and patients with CKD. Results: In a pilot taste test of 125 healthy subjects, the number of participants with an aversive reaction increased at higher salt concentrations. The threshold for normal taste perception was arbitrarily defined as 10% NaCl, with 47.2% of healthy subjects displaying an aversive reaction. In taste tests performed by 70 patients with CKD, 10% were unable to recognize a salt taste, even at the highest concentration (20% NaCl), suggesting a significant impairment in taste perception in patients with CKD. Only 15.7% of patients with CKD exhibited a normal aversion to NaCl, whereas 78.6% showed the complete loss of aversion to salt. Conclusion: The present results confirmed the anticipated aversive response to a high salt taste in humans and demonstrated its impairment in patients with CKD, implying that patients with CKD have reduced resistance to a high salt intake.

3.
Am J Physiol Renal Physiol ; 326(5): F827-F838, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38482555

RESUMO

In the aftermath of acute kidney injury (AKI), surviving proximal tubule epithelia repopulate injured tubules to promote repair. However, a portion of cells fail to repair [termed failed-repair proximal tubule cells (FR-PTCs)] and exert ongoing proinflammatory and profibrotic effects. To better understand the molecular drivers of the FR-PTC state, we reanalyzed a mouse ischemia-reperfusion injury single-nucleus RNA-sequencing (snRNA-seq) atlas to identify Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in FR-PTCs but not in healthy or acutely injured proximal tubules after AKI (2 and 6 wk) in mice. We confirmed expression of Tnik protein in injured mouse and human tissues by immunofluorescence. Then, to determine the functional role of Tnik in FR-PTCs, we depleted TNIK with siRNA in two human renal proximal tubule epithelial cell lines (primary and immortalized hRPTECs) and analyzed each by bulk RNA-sequencing. Pathway analysis revealed significant upregulation of inflammatory signaling pathways, whereas pathways associated with differentiated proximal tubules such as organic acid transport were significantly downregulated. TNIK gene knockdown drove reduced cell viability and increased apoptosis, including differentially expressed poly(ADP-ribose) polymerase (PARP) family members, cleaved PARP-1 fragments, and increased annexin V binding to phosphatidylserine. Together, these results indicate that Tnik upregulation in FR-PTCs acts in a compensatory fashion to suppress inflammation and promote proximal tubule epithelial cell survival after injury. Modulating TNIK activity may represent a prorepair therapeutic strategy after AKI.NEW & NOTEWORTHY The molecular drivers of successful and failed repair in the proximal tubule after acute kidney injury (AKI) are incompletely understood. We identified Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in failed-repair proximal tubule cells after AKI. We tested the effect of siTNIK depletion in two proximal tubule cell lines followed by bulk RNA-sequencing analysis. Our results indicate that TNIK acts to suppress inflammatory signaling and apoptosis in injured renal proximal tubule epithelial cells to promote cell survival.


Assuntos
Injúria Renal Aguda , Apoptose , Células Epiteliais , Túbulos Renais Proximais , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Animais , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/genética , Transdução de Sinais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Linhagem Celular , Inflamação/metabolismo , Inflamação/patologia , Masculino
4.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328130

RESUMO

Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition we generated a single nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting especially activation of proinflammatory pathways. We further generated single nucleus multiomic data from four human AKI samples including validation by genome-wide identification of NF-kB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubule cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.

5.
iScience ; 27(2): 109020, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38357667

RESUMO

The immense public health burden of diabetic kidney disease (DKD) has led to an increase in research on the pathophysiology of advanced DKD. The present study focused on the significance of proinflammatory vascular cell adhesion molecule 1 (VCAM1)+ tubules in DKD progression. A retrospective cohort study of DKD patients showed that the percentage of VCAM1+ tubules in kidney samples was correlated with poor renal outcomes. We established an advanced DKD model by partial resection of the kidneys of db/db mice and demonstrated that it closely resembled the human advanced DKD phenotype, with tissue hypoxia, tubular DNA damage, tissue inflammation, and high tubular VCAM1 expression. Luseogliflozin ameliorated tissue hypoxia and proinflammatory responses, including VCAM1+ expression, in tubules. These findings suggest the potential of tubular VCAM1 as a histological marker for poor DKD outcomes. SGLT2 inhibitors may attenuate tissue hypoxia and subsequent tissue inflammation in advanced DKD, thereby ameliorating tubular injury.

6.
Structure ; 32(3): 263-272.e7, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38228146

RESUMO

SARS-CoV-2 rapidly mutates and acquires resistance to neutralizing antibodies. We report an in-silico-designed antibody that restores the neutralizing activity of a neutralizing antibody. Our previously generated antibody, UT28K, exhibited broad neutralizing activity against mutant variants; however, its efficacy against Omicron BA.1 was compromised by the mutation. Using previously determined structural information, we designed a modified-UT28K (VH T28R/N57D), UT28K-RD targeting the mutation site. In vitro and in vivo experiments demonstrated the efficacy of UT28K-RD in neutralizing Omicron BA.1. Although the experimentally determined structure partially differed from the predicted model, our study serves as a successful case of antibody design, wherein the predicted amino acid substitution enhanced the recognition of the previously elusive Omicron BA.1. We anticipate that numerous similar cases will be reported, showcasing the potential of this approach for improving protein-protein interactions. Our findings will contribute to the development of novel therapeutic strategies for highly mutable viruses, such as SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Anticorpos Antivirais , Anticorpos Neutralizantes , Mutação , Anticorpos Monoclonais
7.
Cell ; 186(22): 4920-4935.e23, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37776859

RESUMO

SpCas9 and AsCas12a are widely utilized as genome-editing tools in human cells. However, their relatively large size poses a limitation for delivery by cargo-size-limited adeno-associated virus (AAV) vectors. The type V-F Cas12f from Acidibacillus sulfuroxidans is exceptionally compact (422 amino acids) and has been harnessed as a compact genome-editing tool. Here, we developed an approach, combining deep mutational scanning and structure-informed design, to successfully generate two AsCas12f activity-enhanced (enAsCas12f) variants. Remarkably, the enAsCas12f variants exhibited genome-editing activities in human cells comparable with those of SpCas9 and AsCas12a. The cryoelectron microscopy (cryo-EM) structures revealed that the mutations stabilize the dimer formation and reinforce interactions with nucleic acids to enhance their DNA cleavage activities. Moreover, enAsCas12f packaged with partner genes in an all-in-one AAV vector exhibited efficient knock-in/knock-out activities and transcriptional activation in mice. Taken together, enAsCas12f variants could offer a minimal genome-editing platform for in vivo gene therapy.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Humanos , Camundongos , Microscopia Crioeletrônica , Mutação , Terapia Genética
8.
Nat Commun ; 14(1): 4198, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452031

RESUMO

SARS-CoV-2 Omicron subvariants have evolved to evade receptor-binding site (RBS) antibodies that exist in diverse individuals as public antibody clones. We rationally selected RBS antibodies resilient to mutations in emerging Omicron subvariants. Y489 was identified as a site of virus vulnerability and a common footprint of broadly neutralizing antibodies against the subvariants. Multiple Y489-binding antibodies were encoded by public clonotypes and additionally recognized F486, potentially accounting for the emergence of Omicron subvariants harboring the F486V mutation. However, a subclass of antibodies broadly neutralized BA.4/BA.5 variants via hydrophobic binding sites of rare clonotypes along with high mutation-resilience under escape mutation screening. A computationally designed antibody based on one of the Y489-binding antibodies, NIV-10/FD03, was able to bind XBB with any 486 mutation and neutralized XBB.1.5. The structural basis for the mutation-resilience of this Y489-binding antibody group may provide important insights into the design of therapeutics resistant to viral escape.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Antivirais , Sítios de Ligação , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
9.
Nat Commun ; 14(1): 4084, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443159

RESUMO

Nonalcoholic steatohepatitis (NASH) is a progressive disorder with aberrant lipid accumulation and subsequent inflammatory and profibrotic response. Therapeutic efforts at lipid reduction via increasing cytoplasmic lipolysis unfortunately worsens hepatitis due to toxicity of liberated fatty acid. An alternative approach could be lipid reduction through autophagic disposal, i.e., lipophagy. We engineered a synthetic adaptor protein to induce lipophagy, combining a lipid droplet-targeting signal with optimized LC3-interacting domain. Activating hepatocyte lipophagy in vivo strongly mitigated both steatosis and hepatitis in a diet-induced mouse NASH model. Mechanistically, activated lipophagy promoted the excretion of lipid from hepatocytes, thereby suppressing harmful intracellular accumulation of nonesterified fatty acid. A high-content compound screen identified alpelisib and digoxin, clinically-approved compounds, as effective activators of lipophagy. Administration of alpelisib or digoxin in vivo strongly inhibited the transition to steatohepatitis. These data thus identify lipophagy as a promising therapeutic approach to prevent NASH progression.


Assuntos
Hepatite , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Autofagia , Digoxina/farmacologia , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
10.
iScience ; 26(5): 106662, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192975

RESUMO

Pulmonary arterial hypertension (PAH) is a fatal disease characterized by a progressive increase in pulmonary artery pressure caused by pathological pulmonary artery remodeling. Here, we demonstrate that endothelial cell (EC) senescence plays a negative role in pulmonary hypertension via juxtacrine interaction with smooth muscle cells (SMCs). By using EC-specific progeroid mice, we discovered that EC progeria deteriorated vascular remodeling in the lungs, and exacerbated pulmonary hypertension in mice. Mechanistically, senescent ECs overexpressed Notch ligands, which resulted in increased Notch signaling and activated proliferation and migration capacities in neighboring SMCs. Pharmacological inhibition of Notch signaling reduced the effects of senescent ECs on SMCs functions in vitro, and improved the worsened pulmonary hypertension in EC-specific progeroid mice in vivo. Our findings show that EC senescence is a critical disease-modifying factor in PAH and that EC-mediated Notch signaling is a pharmacotherapeutic target for the treatment of PAH, particularly in the elderly.

11.
Sci Rep ; 13(1): 8705, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248327

RESUMO

Streptozotocin (STZ), an anti-cancer drug that is primarily used to treat neuroendocrine tumors (NETs) in clinical settings, is incorporated into pancreatic ß-cells or proximal tubular epithelial cells through the glucose transporter, GLUT2. However, its cytotoxic effects on kidney cells have been underestimated and the underlying mechanisms remain unclear. We herein demonstrated that DNA damage and subsequent p53 signaling were responsible for the development of STZ-induced tubular epithelial injury. We detected tubular epithelial DNA damage in NET patients treated with STZ. Unbiased transcriptomics of STZ-treated tubular epithelial cells in vitro showed the activation of the p53 signaling pathway. STZ induced DNA damage and activated p53 signaling in vivo in a dose-dependent manner, resulting in reduced membrane transporters. The pharmacological inhibition of p53 and sodium-glucose transporter 2 (SGLT2) mitigated STZ-induced epithelial injury. However, the cytotoxic effects of STZ on pancreatic ß-cells were preserved in SGLT2 inhibitor-treated mice. The present results demonstrate the proximal tubular-specific cytotoxicity of STZ and the underlying mechanisms in vivo. Since the cytotoxic effects of STZ against ß-cells were not impaired by dapagliflozin, pretreatment with an SGLT2 inhibitor has potential as a preventative remedy for kidney injury in NET patients treated with STZ.


Assuntos
Antineoplásicos , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Animais , Estreptozocina/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Rim/metabolismo , Transdução de Sinais , Antineoplásicos/farmacologia , Túbulos Renais Proximais/metabolismo
12.
Vaccines (Basel) ; 11(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992294

RESUMO

The major concern with COVID-19 therapeutic monoclonal antibodies is the loss of efficacy against continuously emerging variants of SARS-CoV-2. To predict antibody efficacy against future Omicron subvariants, we conducted deep mutational scanning (DMS) encompassing all single mutations of the receptor-binding domain of the BA.2 strain utilizing an inverted infection assay with an ACE2-harboring virus and library spike-expressing cells. In the case of bebtelovimab, which preserves neutralization activity against BA.2 and BA.5, a broad range of amino acid substitutions at K444, V445, and G446, and some substitutions at P499 and T500, were indicated to achieve the antibody escape. Among subvariants with current rises in case numbers, BA2.75 with G446S partially evaded neutralization by bebtelovimab, while complete evasion was observed in XBB with V445P and BQ.1 with K444T. This is consistent with the DMS results against BA.2, highlighting the potential of DMS as a predictive tool for antibody escape.

13.
J Am Soc Nephrol ; 34(4): 554-571, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735940

RESUMO

SIGNIFICANCE STATEMENT: Understanding the mechanisms underlying adaptive and maladaptive renal repair after AKI and their long-term consequences is critical to kidney health. The authors used lineage tracing of cycling cells and single-nucleus multiomics (profiling transcriptome and chromatin accessibility) after AKI. They demonstrated that AKI triggers a cell-cycle response in most epithelial and nonepithelial kidney cell types. They also showed that maladaptive proinflammatory proximal tubule cells (PTCs) persist until 6 months post-AKI, although they decreased in abundance over time, in part, through cell death. Single-nucleus multiomics of lineage-traced cells revealed regulatory features of adaptive and maladaptive repair. These included activation of cell state-specific transcription factors and cis-regulatory elements, and effects in PTCs even after adaptive repair, weeks after the injury event. BACKGROUND: AKI triggers a proliferative response as part of an intrinsic cellular repair program, which can lead to adaptive renal repair, restoring kidney structure and function, or maladaptive repair with the persistence of injured proximal tubule cells (PTCs) and an altered kidney structure. However, the cellular and molecular understanding of these repair programs is limited. METHODS: To examine chromatin and transcriptional responses in the same cell upon ischemia-reperfusion injury (IRI), we combined genetic fate mapping of cycling ( Ki67+ ) cells labeled early after IRI with single-nucleus multiomics-profiling transcriptome and chromatin accessibility in the same nucleus-and generated a dataset of 83,315 nuclei. RESULTS: AKI triggered a broad cell cycle response preceded by cell type-specific and global transcriptional changes in the nephron, the collecting and vascular systems, and stromal and immune cell types. We observed a heterogeneous population of maladaptive PTCs throughout proximal tubule segments 6 months post-AKI, with a marked loss of maladaptive cells from 4 weeks to 6 months. Gene expression and chromatin accessibility profiling in the same nuclei highlighted differences between adaptive and maladaptive PTCs in the activity of cis-regulatory elements and transcription factors, accompanied by corresponding changes in target gene expression. Adaptive repair was associated with reduced expression of genes encoding transmembrane transport proteins essential to kidney function. CONCLUSIONS: Analysis of genome organization and gene activity with single-cell resolution using lineage tracing and single-nucleus multiomics offers new insight into the regulation of renal injury repair. Weeks to months after mild-to-moderate IRI, maladaptive PTCs persist with an aberrant epigenetic landscape, and PTCs exhibit an altered transcriptional profile even following adaptive repair.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Multiômica , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição/genética , Cromatina/genética
14.
Heliyon ; 8(9): e10615, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36148274

RESUMO

Based on recent clinical trials using sodium-glucose co-transporter 2 inhibitor (SGLT2i) demonstrating the significant improvement of outcomes of diabetic kidney disease (DKD), the paradigm shift from "glomerulocentric" to "tubule centric" pathophysiology in DKD progression has been highlighted. Several responsible mechanisms for renoprotective effects by SGLT2i have been proposed recently, but the changes in proximal tubule-specific gene expression by SGLT2i in diabetic mice have not been elucidated. We report the analysis of the proximal tubular-specific pathway, demonstrating the downregulation of oxidative phosphorylation in dapagliflozin-treated db/db mice, a type 2 diabetic model. After 8-week treatment of dapagliflozin for db/db mice having a proximal tubule-specific tdTomato reporter, tdTomato-positive cells were isolated by FACS. Pathway analysis of RNA sequencing of isolated tubular epithelia revealed that oxidative phosphorylation was downregulated in dapagliflozin-treated mice. However, depletion of renal tissue ATP content in db/db mice was ameliorated by dapagliflozin administration. Pimonidazole staining demonstrated renal cortical tissue hypoxia in db/db mice, which was improved by dapagliflozin administration. This study suggests that dapagliflozin can ameliorate the excessive oxygen and ATP consumption, and subsequent tissue hypoxia in the diabetic kidney, which may explain, in part, the responsible mechanisms of the renoprotective effects of dapagliflozin.

15.
Sci Transl Med ; 14(650): eabn7737, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35471044

RESUMO

The Omicron (B.1.1.529) SARS-CoV-2 variant contains an unusually high number of mutations in the spike protein, raising concerns of escape from vaccines, convalescent serum, and therapeutic drugs. Here, we analyzed the degree to which Omicron pseudo-virus evades neutralization by serum or therapeutic antibodies. Serum samples obtained 3 months after two doses of BNT162b2 vaccination exhibited 18-fold lower neutralization titers against Omicron than parental virus. Convalescent serum samples from individuals infected with the Alpha and Delta variants allowed similar frequencies of Omicron breakthrough infections. Domain-wise analysis using chimeric spike proteins revealed that this efficient evasion was primarily achieved by mutations clustered in the receptor binding domain but that multiple mutations in the N-terminal domain contributed as well. Omicron escaped a therapeutic cocktail of imdevimab and casirivimab, whereas sotrovimab, which targets a conserved region to avoid viral mutation, remains effective. Angiotensin-converting enzyme 2 (ACE2) decoys are another virus-neutralizing drug modality that are free, at least in theory, from complete escape. Deep mutational analysis demonstrated that an engineered ACE2 molecule prevented escape for each single-residue mutation in the receptor binding domain, similar to immunized serum. Engineered ACE2 neutralized Omicron comparably to the Wuhan strain and also showed a therapeutic effect against Omicron infection in hamsters and human ACE2 transgenic mice. Similar to previous SARS-CoV-2 variants, some sarbecoviruses showed high sensitivity against engineered ACE2, confirming the therapeutic value against diverse variants, including those that are yet to emerge.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Vacina BNT162 , COVID-19/terapia , Humanos , Imunização Passiva , Camundongos , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Soroterapia para COVID-19
16.
Sci Rep ; 12(1): 778, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039597

RESUMO

Kidney hypertrophy is a common clinical feature in patients with diabetes and is associated with poor renal outcomes. Initial cell proliferation followed by cellular hypertrophy are considered the responsible mechanisms for diabetic kidney hypertrophy. However, whether similar responses against hyperglycemia continue in the chronic phase in diabetes is unclear. We performed lineage tracing analysis of proximal tubular epithelia using novel type 2 diabetic mice with a tamoxifen-inducible proximal tubule-specific fluorescent reporter. Clonal analysis of proximal tubular epithelia demonstrated that the labeled epithelia proliferated in type 2 diabetic mice. Based on the histological analysis and protein/DNA ratio of sorted labeled tubular epithelia, there was no evidence of cellular hypertrophy in type 2 diabetic mice. Lineage tracing and histological analyses of streptozocin-induced type 1 diabetes also revealed that cellular proliferation occurs in the chronic phase of type 1 diabetes induction. According to our study, epithelial proliferation accompanied by SGLT2 upregulation, rather than cellular hypertrophy, predominantly occurs in the hypertrophic kidney in both type 1 and type 2 diabetes. An increased number of SGLT2+ tubular epithelia may be an adaptive response against hyperglycemia, and linked to the hyper-reabsorption of sodium and glucose observed in type 2 diabetes patients.


Assuntos
Proliferação de Células , Nefropatias Diabéticas/patologia , Células Epiteliais/patologia , Túbulos Renais Proximais/patologia , Animais , Proliferação de Células/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/etiologia , Modelos Animais de Doenças , Hipertrofia , Túbulos Renais Proximais/citologia , Masculino , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo , Regulação para Cima
17.
Kidney Int ; 101(3): 551-562, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34843756

RESUMO

Heart failure is frequently accompanied by kidney failure and co-incidence of these organ failures worsens the mortality in patients with heart failure. Recent clinical observations revealed that increased kidney venous pressure, rather than decreased cardiac output, causes the deterioration of kidney function in patients with heart failure. However, the underlying pathophysiology is unknown. Here, we found that decreased blood flow velocity in peritubular capillaries by kidney congestion and upregulation of endothelial nuclear factor-κB (NF-κB) signaling synergistically exacerbate kidney injury. We generated a novel mouse model with unilateral kidney congestion by constriction of the inferior vena cava between kidney veins. Intravital imaging highlighted the notable dilatation of peritubular capillaries and decreased kidney blood flow velocity in the congestive kidney. Damage after ischemia reperfusion injury was exacerbated in the congestive kidney and accumulation of polymorphonuclear leukocytes within peritubular capillaries was noted at the acute phase after injury. Similar results were obtained in vitro, in which polymorphonuclear leukocytes adhesion on activated endothelial cells was decreased in flow velocity-dependent manner but cancelled by inhibition of NF-κB signaling. Pharmacological inhibition of NF-κB for the mice subjected by both kidney congestion and ischemia reperfusion injury ameliorated the accumulation of polymorphonuclear leukocytes and subsequent exacerbation of kidney injury. Thus, our study demonstrates the importance of decreased blood flow velocity accompanying activated NF-κB signaling in aggravation of kidney injury. Hence, inhibition of NF-κB signaling may be a therapeutic candidate for the vicious cycle between heart and kidney failure with increased kidney venous pressure.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/terapia , Animais , Células Endoteliais , Humanos , Rim , Camundongos , NF-kappa B , Traumatismo por Reperfusão/complicações
18.
Sci Rep ; 11(1): 20920, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686727

RESUMO

Cisplatin is a commonly used anticancer drug, but nephrotoxicity is a dose-limiting adverse effect. Recent experimental and clinical observations have demonstrated that multiple injections of cisplatin induce the transition to chronic kidney disease; however, the underlying mechanisms remain unclear. We found that multiple injections of higher doses of cisplatin in a shorter interval affected the severity of kidney injury, causing kidney fibrosis to develop at a later time point. An additional injection of cisplatin during the recovery period after a prior injury, when proximal tubule epithelia are actively proliferating, induced substantial tubular injury by inducing more severe DNA damage than that induced by a single injection. Lineage tracing analysis of proximal tubular epithelia demonstrated that the tubular epithelia that underwent multiple rounds of cell division after multiple injections of cisplatin existed at the chronic phase, and these populations often expressed vcam1 + , suggesting the induction of proinflammatory failed-repair tubular epithelia. Our study revealed that as cisplatin exerts cytotoxic effects on actively proliferating cells, additional cisplatin injections before the completion of tubular repair exacerbates kidney injury through cumulative DNA damage. Appropriate both the setting of dosage and dosing intervals, with careful monitoring, are essential to prevent nephrotoxicity of repeated cisplatin treatment in cancer patients.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Insuficiência Renal Crônica/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Modelos Animais de Doenças , Fibrose/tratamento farmacológico , Fibrose/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/patologia
19.
Nat Commun ; 12(1): 3802, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155214

RESUMO

SARS-CoV-2 has mutated during the global pandemic leading to viral adaptation to medications and vaccinations. Here we describe an engineered human virus receptor, ACE2, by mutagenesis and screening for binding to the receptor binding domain (RBD). Three cycles of random mutagenesis and cell sorting achieved sub-nanomolar affinity to RBD. Our structural data show that the enhanced affinity comes from better hydrophobic packing and hydrogen-bonding geometry at the interface. Additional disulfide mutations caused the fixing of a closed ACE2 conformation to avoid off-target effects of protease activity, and also improved structural stability. Our engineered ACE2 neutralized SARS-CoV-2 at a 100-fold lower concentration than wild type; we also report that no escape mutants emerged in the co-incubation after 15 passages. Therapeutic administration of engineered ACE2 protected hamsters from SARS-CoV-2 infection, decreased lung virus titers and pathology. Our results provide evidence of a therapeutic potential of engineered ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/farmacologia , Tratamento Farmacológico da COVID-19 , Mutação , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/virologia , Células Cultivadas , Cricetinae , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Masculino , Simulação de Dinâmica Molecular , Ligação Proteica , Engenharia de Proteínas/métodos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo
20.
Am J Physiol Renal Physiol ; 319(4): F579-F591, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32799673

RESUMO

Tubular atrophy is a common pathological feature of kidney fibrosis. Although fibroblasts play a predominant role in tissue fibrosis, the role of repairing tubular epithelia in tubular atrophy is unclear. We demonstrated the essential role of focal adhesion kinase (FAK)-mediated intratubular epithelial-mesenchymal transition (EMT) in the pathogenesis of tubular atrophy after severe ischemia-reperfusion injury (IRI). Actively proliferating tubular epithelia undergoing intratubular EMT were noted in the acute phase of severe IRI, resulting in tubular atrophy in the chronic phase, reflecting failed tubular repair. Furthermore, FAK was phosphorylated in the tubular epithelia in the acute phase of severe IRI, and its inhibition ameliorated both tubular atrophy and interstitial fibrosis in the chronic phase after injury. In vivo clonal analysis of single-labeled proximal tubular epithelial cells after IRI using proximal tubule reporter mice revealed substantial clonal expansion after IRI, reflecting active epithelial proliferation during repair. The majority of these proliferating epithelia were located in atrophic and nonfunctional tubules, and FAK inhibition was sufficient to prevent tubular atrophy. In vitro, transforming growth factor-ß induced FAK phosphorylation and an EMT phenotype, which was also prevented by FAK inhibition. In an in vitro tubular epithelia gel contraction assay, transforming growth factor-ß treatment accelerated gel contraction, which was suppressed by FAK inhibition. In conclusion, injury-induced intratubular EMT is closely related to tubular atrophy in a FAK-dependent manner.


Assuntos
Injúria Renal Aguda/patologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Túbulos Renais Proximais/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Animais , Atrofia , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos Transgênicos , Fenótipo , Fosforilação , Ratos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA