Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 10: 101989, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36691673

RESUMO

The application of ecological theory in urban planning is becoming more important as land managers focus on increasing biodiversity to improve human welfare in cities. Authorities must decide not only what types of biodiversity-focused infrastructure should be prioritized, but also where new resources should be positioned and existing resources protected or enhanced. Measuring the contribution of green infrastructure to landscape connectivity can maximise the successful return and conservation of urban nature. By using ecological connectivity theory as a planning tool, the effect of different interventions (both positive and negative) on the ease with which wildlife can move across the landscape can be compared. Here we outline an approach to a) quantify ecological connectivity for different urban wildlife species and b) use this to test different urban planning scenarios using QGIS. We demonstrate extensions which improve the application of this method as a planning tool:•Conversion of the effective mesh size value ( m eff ) to a "probability of connectedness" ( P c , for easier interpretation by local government and comparisons between planning scenarios).•An approach for measuring species-specific connectivity, including how to decide what spatial information should be included and which types of species might be most responsive to connectivity planning.•Guidance for using the method to compare different urban planning scenarios.

2.
PLoS One ; 16(12): e0260812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914747

RESUMO

Understanding the points in a species breeding cycle when they are most vulnerable to environmental fluctuations is key to understanding interannual demography and guiding effective conservation and management. Seabirds represent one of the most threatened groups of birds in the world, and climate change and severe weather is a prominent and increasing threat to this group. We used a multi-state capture-recapture model to examine how the demographic rates of a long-lived trans-oceanic migrant seabird, the Manx shearwater Puffinus puffinus, are influenced by environmental conditions experienced at different stages of the annual breeding cycle and whether these relationships vary with an individual's breeding state in the previous year (i.e., successful breeder, failed breeder and non-breeder). Our results imply that populations of Manx shearwaters are comprised of individuals with different demographic profiles, whereby more successful reproduction is associated with higher rates of survival and breeding propensity. However, we found that all birds experienced the same negative relationship between rates of survival and wind force during the breeding season, indicating a cost of reproduction (or central place constraint for non-breeders) during years with severe weather conditions. We also found that environmental effects differentially influence the breeding propensity of individuals in different breeding states. This suggests individual spatio-temporal variation in habitat use during the annual cycle, such that climate change could alter the frequency that individuals with different demographic profiles breed thereby driving a complex and less predictable population response. More broadly, our study highlights the importance of considering individual-level factors when examining population demography and predicting how species may respond to climate change.


Assuntos
Migração Animal/fisiologia , Cruzamento , Mudança Climática , Demografia/estatística & dados numéricos , Ecossistema , Reprodução , Estações do Ano , Animais , Aves , Oceanos e Mares
3.
Sci Rep ; 10(1): 15056, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929167

RESUMO

Biologging has emerged as one of the most powerful and widely used technologies in ethology and ecology, providing unprecedented insight into animal behaviour. However, attaching loggers to animals may alter their behaviour, leading to the collection of data that fails to represent natural activity accurately. This is of particular concern in free-ranging animals, where tagged individuals can rarely be monitored directly. One of the most commonly reported measures of impact is breeding success, but this ignores potential short-term alterations to individual behaviour. When collecting ecological or behavioural data, such changes can have important consequences for the inference of results. Here, we take a multifaceted approach to investigate whether tagging leads to short-term behavioural changes, and whether these are later reflected in breeding performance, in a pelagic seabird. We analyse a long-term dataset of tracking data from Manx shearwaters (Puffinus puffinus), comparing the effects of carrying no device, small geolocator (GLS) devices (0.6% body mass), large Global Positioning System (GPS) devices (4.2% body mass) and a combination of the two (4.8% body mass). Despite exhibiting normal breeding success in both the year of tagging and the following year, incubating birds carrying GPS devices altered their foraging behaviour compared to untagged birds. During their foraging trips, GPS-tagged birds doubled their time away from the nest, experienced reduced foraging gains (64% reduction in mass gained per day) and reduced flight time by 14%. These findings demonstrate that the perceived impacts of device deployment depends on the scale over which they are sought: long-term measures, such as breeding success, can obscure finer-scale behavioural change, potentially limiting the validity of using GPS to infer at-sea behaviour when answering behavioural or ecological questions.


Assuntos
Comportamento Animal , Aves/fisiologia , Tecnologia de Sensoriamento Remoto/métodos , Animais , Oceanos e Mares , Tecnologia de Sensoriamento Remoto/efeitos adversos
4.
Proc Natl Acad Sci U S A ; 116(43): 21629-21633, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591238

RESUMO

While displacement experiments have been powerful for determining the sensory basis of homing navigation in birds, they have left unresolved important cognitive aspects of navigation such as what birds know about their location relative to home and the anticipated route. Here, we analyze the free-ranging Global Positioning System (GPS) tracks of a large sample (n = 707) of Manx shearwater, Puffinus puffinus, foraging trips to investigate, from a cognitive perspective, what a wild, pelagic seabird knows as it begins to home naturally. By exploiting a kind of natural experimental contrast (journeys with or without intervening obstacles) we first show that, at the start of homing, sometimes hundreds of kilometers from the colony, shearwaters are well oriented in the homeward direction, but often fail to encode intervening barriers over which they will not fly (islands or peninsulas), constrained to flying farther as a result. Second, shearwaters time their homing journeys, leaving earlier in the day when they have farther to go, and this ability to judge distance home also apparently ignores intervening obstacles. Thus, at the start of homing, shearwaters appear to be making navigational decisions using both geographic direction and distance to the goal. Since we find no decrease in orientation accuracy with trip length, duration, or tortuosity, path integration mechanisms cannot account for these findings. Instead, our results imply that a navigational mechanism used to direct natural large-scale movements in wild pelagic seabirds has map-like properties and is probably based on large-scale gradients.


Assuntos
Comportamento de Retorno ao Território Vital/fisiologia , Orientação Espacial/fisiologia , Navegação Espacial/fisiologia , Animais , Aves , Sistemas de Informação Geográfica
5.
J Anim Ecol ; 85(6): 1516-1527, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27576353

RESUMO

Long-lived migratory animals must balance the cost of current reproduction with their own condition ahead of a challenging migration and future reproduction. In these species, carry-over effects, which occur when events in one season affect the outcome of the subsequent season, may be particularly exacerbated. However, how carry-over effects influence future breeding outcomes and whether (and how) they also affect behaviour during migration and wintering is unclear. Here we investigate carry-over effects induced by a controlled, bidirectional manipulation of the duration of reproductive effort on the migratory, wintering and subsequent breeding behaviour of a long-lived migratory seabird, the Manx shearwater Puffinus puffinus. By cross-fostering chicks of different age between nests, we successfully prolonged or shortened by ∼25% the chick-rearing period of 42 breeding pairs. We tracked the adults with geolocators over the subsequent year and combined migration route data with at-sea activity budgets obtained from high-resolution saltwater-immersion data. Migratory behaviour was also recorded during non-experimental years (the year before and/or two years after manipulation) for a subset of birds, allowing comparison between experimental and non-experimental years within treatment groups. All birds cared for chicks until normal fledging age, resulting in birds with a longer breeding period delaying their departure on migration; however, birds that finished breeding earlier did not start migrating earlier. Increased reproductive effort resulted in less time spent at the wintering grounds, a reduction in time spent resting daily and a delayed start of breeding with lighter eggs and chicks and lower breeding success the following breeding season. Conversely, reduced reproductive effort resulted in more time resting and less time foraging during the winter, but a similar breeding phenology and success compared with control birds the following year, suggesting that 'positive' carry-over effects may also occur but perhaps have a less long-lasting impact than those incurred from increased reproductive effort. Our results shed light on how carry-over effects can develop and modify an adult animal's behaviour year-round and reveal how a complex interaction between current and future reproductive fitness, individual condition and external constraints can influence life-history decisions.


Assuntos
Aves/fisiologia , Longevidade , Reprodução , Migração Animal , Animais , Características de História de Vida , Estações do Ano , País de Gales
6.
Behav Ecol ; 27(4): 1061-1072, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27418752

RESUMO

Animals can be flexible in their migration strategies, using several wintering sites or a variety of routes. The mechanisms promoting the development of these migratory patterns and their potential fitness consequences are poorly understood. Here, we address these questions by tracking the dispersive migration of a pelagic seabird, the Atlantic puffin Fratercula arctica, using over 100 complete migration tracks collected over 7 years, including repeated tracks of individuals for up to 6 consecutive years. Because puffins have high flight costs, dispersion may generate important variation in costs of migration. We investigate differences in activity budgets and energy expenditure between different strategies. We find that puffins visit a range of overwintering destinations, resulting in a diversity of migratory routes differing in energy expenditures; however, they show interindividual similarity in the timings and location of major movements. We consider 3 hypothetical mechanisms that could generate this pattern: 1) random dispersion; 2) sex segregation; and 3) intraspecific competition or differences in individual quality. First, we dismiss random dispersion because individuals show strong route fidelity between years. Second, we find that sex differences contribute to, but do not account fully for, the migratory variation observed. Third, we find significant differences in breeding success between overwintering destinations, which, together with differences in foraging levels between routes, suggest that birds of different quality may visit different destinations. Taken together, our results show that dispersive migration is a complex phenomenon that can be driven by multiple factors simultaneously and can shape a population's fitness landscape.

7.
Mar Biol ; 163: 72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069278

RESUMO

In order to maximize foraging efficiency in a varying environment, predators are expected to optimize their search strategy. Environmental conditions are one important factor affecting these movement patterns, but variations in breeding constraints (self-feeding vs. feeding young and self-feeding) during different breeding stages (incubation vs. chick-rearing) are often overlooked, so that the mechanisms responsible for such behavioral shifts are still unknown. Here, to test how search patterns are affected at different breeding stages and to explore the proximate causes of these variations, we deployed data loggers to record both position (global positioning system) and dive activity (time-depth recorders) of a colonial breeding seabird, the razorbill Alca torda. Over a period of 3 years, our recordings of 56 foraging trips from 18 breeders show that while there is no evidence for individual route fidelity, razorbills exhibit higher foraging flexibility during incubation than during chick rearing, when foraging becomes more focused on an area of high primary productivity. We further show that this behavioral shift is not due to a shift in search patterns, as reorientations during foraging are independent of breeding stage. Our results suggest that foraging flexibility and search patterns are unlinked, perhaps because birds can read cues from their environment, including conspecifics, to optimize their foraging efficiency.

8.
J R Soc Interface ; 10(84): 20130279, 2013 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-23635496

RESUMO

Understanding the behaviour of animals in the wild is fundamental to conservation efforts. Advances in bio-logging technologies have offered insights into the behaviour of animals during foraging, migration and social interaction. However, broader application of these systems has been limited by device mass, cost and longevity. Here, we use information from multiple logger types to predict individual behaviour in a highly pelagic, migratory seabird, the Manx Shearwater (Puffinus puffinus). Using behavioural states resolved from GPS tracking of foraging during the breeding season, we demonstrate that individual behaviours can be accurately predicted during multi-year migrations from low cost, lightweight, salt-water immersion devices. This reveals a complex pattern of migratory stopovers: some involving high proportions of foraging, and others of rest behaviour. We use this technique to examine three consecutive years of global migrations, revealing the prominence of foraging behaviour during migration and the importance of highly productive waters during migratory stopover.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Informática/métodos , Modelos Biológicos , Animais , Comportamento Apetitivo/fisiologia , Conservação dos Recursos Naturais/métodos , Coleta de Dados/métodos , Sistemas de Informação Geográfica , Ilhas , Irlanda do Norte , Telemetria/métodos
9.
PLoS One ; 6(7): e21336, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799734

RESUMO

Navigational control of avian migration is understood, largely from the study of terrestrial birds, to depend on either genetically or culturally inherited information. By tracking the individual migrations of Atlantic Puffins, Fratercula arctica, in successive years using geolocators, we describe migratory behaviour in a pelagic seabird that is apparently incompatible with this view. Puffins do not migrate to a single overwintering area, but follow a dispersive pattern of movements changing through the non-breeding period, showing great variability in travel distances and directions. Despite this within-population variability, individuals show remarkable consistency in their own migratory routes among years. This combination of complex population dispersion and individual route fidelity cannot easily be accounted for in terms of genetic inheritance of compass instructions, or cultural inheritance of traditional routes. We suggest that a mechanism of individual exploration and acquired navigational memory may provide the dominant control over Puffin migration, and potentially some other pelagic seabirds, despite the apparently featureless nature of the ocean.


Assuntos
Migração Animal , Charadriiformes , Comportamento de Retorno ao Território Vital , Animais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...