Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10374, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365234

RESUMO

Proximal spinal muscular atrophy (SMA) is a leading genetic cause for infant death in the world and results from the selective loss of motor neurons in the spinal cord. SMA is a consequence of low levels of SMN protein and small molecules that can increase SMN expression are of considerable interest as potential therapeutics. Previous studies have shown that both 4-phenylbutyrate (4PBA) and trichostatin A (TSA) increase SMN expression in dermal fibroblasts derived from SMA patients. AR42 is a 4PBA-tethered TSA derivative that is a very potent histone deacetylase inhibitor. SMA patient fibroblasts were treated with either AR42, AR19 (a related analogue), 4PBA, TSA or vehicle for 5 days and then immunostained for SMN localization. AR42 as well as 4PBA and TSA increased the number of SMN-positive nuclear gems in a dose-dependent manner while AR19 did not show marked changes in gem numbers. While gem number was increased in AR42-treated SMA fibroblasts, there were no significant changes in FL-SMN mRNA or SMN protein. The neuroprotective effect of this compound was then assessed in SMNΔ7 SMA (SMN2+/+;SMNΔ7+/+;mSmn-/-) mice. Oral administration of AR42 prior to disease onset increased the average lifespan of SMNΔ7 SMA mice by ~ 27% (20.1 ± 1.6 days for AR42-treated mice vs. 15.8 ± 0.4 days for vehicle-treated mice). AR42 treatment also improved motor function in these mice. AR42 treatment inhibited histone deacetylase (HDAC) activity in treated spinal cord although it did not affect SMN protein expression in these mice. AKT and GSK3ß phosphorylation were both significantly increased in SMNΔ7 SMA mouse spinal cords. In conclusion, presymptomatic administration of the HDAC inhibitor AR42 ameliorates the disease phenotype in SMNΔ7 SMA mice in a SMN-independent manner possibly by increasing AKT neuroprotective signaling.


Assuntos
Atrofia Muscular Espinal , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Neurônios Motores/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/metabolismo , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
2.
PLoS One ; 12(6): e0180657, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662219

RESUMO

C5-substituted 2,4-diaminoquinazolines (2,4-DAQs) ameliorate disease severity in SMA mice. It is uncertain, however, that these compounds increase SMN protein levels in vivo even though they were identified as activators of the SMN2 promoter. These compounds also regulate the expression of other transcripts in neuroblastoma cells. In this study, we investigate the mechanism by which the 2,4-DAQs regulate the expression of SMN2 as well as other targets. D156844, D158872, D157161 and D157495 (RG3039) increased SMN2 promoter-driven reporter gene activity by at least 3-fold in NSC-34 cells. These compounds, however, did not significantly increase SMN2 mRNA levels in type II SMA fibroblasts nor in NSC-34 cells, although there was a trend for these compounds increasing SMN protein in SMA fibroblasts. The number of SMN-containing gems was increased in SMA fibroblasts in response to 2,4-DAQ treatment in a dose-dependent manner. ATOH7 mRNA levels were significantly lower in type II SMA fibroblasts. 2,4-DAQs significantly increased ATOH7, DRNT1 and DRTN2 transcript levels in type II SMA fibroblasts and restored ATOH7 levels to those observed in healthy fibroblasts. These compounds also increase Atoh7 mRNA expression in NSC-34 cells. In conclusion, 2,4-DAQs regulate SMN2 by increasing protein levels and gem localization. They also increase ATOH7, DRNT1 and DRNT2 transcript levels. This study reveals that the protective effects of 2,4-DAQs in SMA may be independent of SMN2 gene regulation. These compounds could be used in concert with a proven SMN2 inducer to develop a multi-faceted approach to treating SMA.


Assuntos
Atrofia Muscular Espinal/patologia , Quinazolinas/farmacologia , RNA Mensageiro/genética , Transcrição Gênica/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Humanos , Camundongos , Atrofia Muscular Espinal/genética , Quinazolinas/química , Proteína 2 de Sobrevivência do Neurônio Motor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...