Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38136612

RESUMO

Raf-1, a multifunctional kinase, regulates various cellular processes, including cell proliferation, apoptosis, and migration, by phosphorylating MAPK/ERK kinase and interacting with specific kinases. Cellular Raf-1 activity is intricately regulated through pathways involving the binding of regulatory proteins, direct phosphorylation, and the ubiquitin-proteasome axis. In this study, we demonstrate that PHI-1, an endogenous inhibitor of protein phosphatase-1 (PP1), plays a pivotal role in modulating Raf-1 proteostasis within cells. Knocking down endogenous PHI-1 in HEK293 cells using siRNA resulted in increased cell proliferation and reduced apoptosis. This heightened cell proliferation was accompanied by a 15-fold increase in ERK1/2 phosphorylation. Importantly, the observed ERK1/2 hyperphosphorylation was attributable to an upregulation of Raf-1 expression, rather than an increase in Ras levels, Raf-1 Ser338 phosphorylation, or B-Raf levels. The elevated Raf-1 expression, stemming from PHI-1 knockdown, enhanced EGF-induced ERK1/2 phosphorylation through MEK. Moreover, PHI-1 knockdown significantly contributed to Raf-1 protein stability without affecting Raf-1 mRNA levels. Conversely, ectopic PHI-1 expression suppressed Raf-1 protein levels in a manner that correlated with PHI-1's inhibitory potency. Inhibiting PP1 to mimic PHI-1's function using tautomycin led to a reduction in Raf-1 expression. In summary, our findings highlight that the PHI-1-PP1 signaling axis selectively governs Raf-1 proteostasis and cell survival signals.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias , Humanos , Proteína Fosfatase 1 , Sistema de Sinalização das MAP Quinases/fisiologia , Proteostase , Células HEK293 , Quinases de Proteína Quinase Ativadas por Mitógeno
2.
Biochem Biophys Res Commun ; 434(1): 137-42, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23541585

RESUMO

CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation.


Assuntos
Núcleo Celular/metabolismo , Proliferação de Células , Inibidores Enzimáticos/metabolismo , Histonas/metabolismo , Proteínas Musculares/metabolismo , Neoplasias Pancreáticas/patologia , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neoplasias Pancreáticas/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Fosforilação , Estrutura Terciária de Proteína , Ratos
3.
Fundam Clin Pharmacol ; 23(2): 169-78, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19298234

RESUMO

RhoA-activated kinase (ROK) is involved in the disorders of smooth muscle contraction found in hypertension model animals and patients. We examined whether the alpha1-adrenergic receptor agonist-induced ROK signal is perturbed in resistance small mesentery artery (SMA) of Lyon genetically hypertensive (LH) rats, using a ROK antagonist, Y27632. Smooth muscle strips of SMA and aorta were isolated from LH and Lyon normotensive (LN) rats. After Ca(2+)-depletion and pre-treatment with phenylephrine (PE), smooth muscle contraction was induced by serial additions of CaCl(2). In LH SMA Ca(2+) permeated cells to a lesser extent as compared with LN SMA, while CaCl(2)-induced contraction of LH SMA was greater than that of LN SMA, indicating a higher ratio of force to Ca(2+) in LH SMA contraction (Ca(2+) sensitization). No hyper-contraction was observed in LH aorta tissues. Treatment of LH SMA with Y27632 restored both Ca(2+) permeability and Ca(2+)-force relationship to levels seen for LN SMA. In response to PE stimulation, phosphorylation of CPI-17, a phosphorylation-dependent myosin phosphatase inhibitor protein, and MYPT1 at Thr853, the inhibitory phosphorylation site of the myosin phosphatase regulatory subunit, was increased in LN SMA, but remained unchanged in LH SMA. These results suggest that the disorder in ROK-dependent Ca(2+) permeability and Ca(2+)-force relationship is responsible for LH SMA hyper-contraction. Unlike other hypertensive models, the ROK-induced hyper-contractility of LH SMA is independent of MYPT1 and CPI-17 phosphorylation, which suggests that ROK-mediated inhibition of myosin phosphatase does not affect SMA hyper-contractility in LH SMA cells.


Assuntos
Amidas/farmacologia , Hipertensão/fisiopatologia , Piridinas/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Cálcio/metabolismo , Cloreto de Cálcio/farmacologia , Modelos Animais de Doenças , Hipertensão/tratamento farmacológico , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Contração Muscular/efeitos dos fármacos , Proteínas Musculares/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Fosfatase 1/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores
4.
Structure ; 15(12): 1591-602, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18073109

RESUMO

Phosphorylation of endogenous inhibitor proteins for type-1 Ser/Thr phosphatase (PP1) provides a mechanism for reciprocal coordination of kinase and phosphatase activities. A myosin phosphatase inhibitor protein CPI-17 is phosphorylated at Thr38 through G-protein-mediated signals, resulting in a >1000-fold increase in inhibitory potency. We show here the solution NMR structure of phospho-T38-CPI-17 with rmsd of 0.36 +/- 0.06 A for the backbone secondary structure, which reveals how phosphorylation triggers a conformational change and exposes an inhibitory surface. This active conformation is stabilized by the formation of a hydrophobic core of intercalated side chains, which is not formed in a phospho-mimetic D38 form of CPI-17. Thus, the profound increase in potency of CPI-17 arises from phosphorylation, conformational change, and hydrophobic stabilization of a rigid structure that poses the phosphorylated residue on the protein surface and restricts its hydrolysis by myosin phosphatase. Our results provide structural insights into transduction of kinase signals by PP1 inhibitor proteins.


Assuntos
Inibidores Enzimáticos/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Inibidores Enzimáticos/química , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Conformação Proteica , Homologia de Sequência de Aminoácidos , Suínos
5.
Cell Motil Cytoskeleton ; 62(2): 100-9, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16106448

RESUMO

Dephosphorylation of actin-binding proteins by a specialized form of protein Ser/Thr phosphatase type-1 (PP1) regulates smooth muscle contraction and morphology and motility of nonmuscle cells. This myosin and ezrin/radixin/moesin (ERM)-targeted phosphatase comprises the delta isoform PP1 catalytic subunit plus a primary regulatory subunit called myosin phosphatase targeting (MYPT1). We reconstructed myosin/ERM phosphatase in living rat embryo fibroblasts (REF52 cells) by transient expression of epitope-tagged MYPT1 (myc-MYPT1) plus HA-tagged PP1. Unexpectedly, wild-type myc-MYPT1 expressed alone accumulated predominantly in the nucleus, as visualized by immunofluorescent microscopy, whereas if coexpressed with HA-PP1, it was localized in the cytosol and deposited on cytoskeleton myofilaments. The F38A mutation of MYPT1 that eliminates PP1 binding gave nuclear localization of myc-MYPT1, even when coexpressed with HA-PP1. Thus, expression of both subunits was necessary to form myosin/ERM phosphatase in situ and mediate myofilament localization. The results indicate there is little endogenous PP1 available for interaction or interchange with ectopic regulatory subunits in living cells. We concluded that myosin binding by the C-terminal domain of MYPT1 is not sufficient to override nuclear import in fibroblasts, but the binding of PP1 to myc-MYPT1 neutralizes nuclear import. Full-length myc-MYPT1 plus HA-PP1 induced only subtle changes in organization of the actin cytoskeleton, however coexpression of myc-MYPT1(1-300) with HA-PP1 dispersed stress fibers without major alteration in morphology and myc-MYPT1(1-498) disrupted the cytoskeleton and produced radically extended cells that appeared like neurons. Based on these responses, we conclude that the MYPT1 C-terminus functions as an auto-inhibitory domain, and a central domain in MYPT1 can mediate extensive reorganization of the actin cytoskeleton.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/enzimologia , Proteína Fosfatase 1/metabolismo , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citoplasma/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...