Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(13)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37443806

RESUMO

The translation of stem cell therapies has been hindered by low cell survival and retention rates. Injectable hydrogels enable the site-specific delivery of therapeutic cargo, including cells, to overcome these challenges. We hypothesized that delivery of mesenchymal stem cells (MSC) via shear-thinning and injectable hyaluronic acid (HA) hydrogels would mitigate renal damage following ischemia-reperfusion acute kidney injury. Acute kidney injury (AKI) was induced in mice by bilateral or unilateral ischemia-reperfusion kidney injury. Three days later, mice were treated with MSCs either suspended in media injected intravenously via the tail vein, or injected under the capsule of the left kidney, or MSCs suspended in HA injected under the capsule of the left kidney. Serial measurements of serum and urine biomarkers of renal function and injury, as well as transcutaneous glomerular filtration rate (tGFR) were performed. In vivo optical imaging showed that MSCs localized to both kidneys in a sustained manner after bilateral ischemia and remained within the ipsilateral treated kidney after unilateral ischemic AKI. One month after injury, MSC/HA treatment significantly reduced urinary NGAL compared to controls; it did not significantly reduce markers of fibrosis compared to untreated controls. An analysis of kidney proteomes revealed decreased extracellular matrix remodeling and high overlap with sham proteomes in MSC/HA-treated animals. Hydrogel-assisted MSC delivery shows promise as a therapeutic treatment following acute kidney injury.


Assuntos
Injúria Renal Aguda , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Camundongos , Masculino , Animais , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Proteoma , Rim , Isquemia/terapia , Injúria Renal Aguda/terapia , Traumatismo por Reperfusão/terapia
2.
Sci Rep ; 12(1): 643, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022484

RESUMO

Acute kidney injury (AKI) is common in patients, causes systemic sequelae, and predisposes patients to long-term cardiovascular disease. To date, studies of the effects of AKI on cardiovascular outcomes have only been performed in male mice. We recently demonstrated that male mice developed diastolic dysfunction, hypertension and reduced cardiac ATP levels versus sham 1 year after AKI. The effects of female sex on long-term cardiac outcomes after AKI are unknown. Therefore, we examined the 1-year cardiorenal outcomes following a single episode of bilateral renal ischemia-reperfusion injury in female C57BL/6 mice using a model with similar severity of AKI and performed concomitantly to recently published male cohorts. To match the severity of AKI between male and female mice, females received 34 min of ischemia time compared to 25 min in males. Serial renal function, echocardiograms and blood pressure assessments were performed throughout the 1-year study. Renal histology, and cardiac and plasma metabolomics and mitochondrial function in the heart and kidney were evaluated at 1 year. Measured glomerular filtration rates (GFR) were similar between male and female mice throughout the 1-year study period. One year after AKI, female mice had preserved diastolic function, normal blood pressure, and preserved levels of cardiac ATP. Compared to males, females demonstrated pathway enrichment in arginine metabolism and amino acid related energy production in both the heart and plasma, and glutathione in the plasma. Cardiac mitochondrial respiration in Complex I of the electron transport chain demonstrated improved mitochondrial function in females compared to males, regardless of AKI or sham. This is the first study to examine the long-term cardiac effects of AKI on female mice and indicate that there are important sex-related cardiorenal differences. The role of female sex in cardiovascular outcomes after AKI merits further investigation.


Assuntos
Injúria Renal Aguda
3.
J Biomed Mater Res A ; 110(3): 652-658, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34590787

RESUMO

The continued development of minimally invasive therapeutic implants, such as injectable hydrogels, necessitates the concurrent advancement of methods to best assess their biocompatibility via functional outcomes in vivo. Biomaterial implants have been studied to treat kidney disease; however, assessment of biocompatibility has been limited to biomarker and histological assessments. Techniques now exist to measure kidney function serially in vivo in murine studies via transcutaneous measurements of glomerular filtration rate (tGFR). In this study, adult male and female wild-type BalbC mice underwent right unilateral nephrectomy. The remaining solitary left kidney was allowed 4 weeks to recover via compensatory hypertrophy, after which subcapsular injection of either saline or shear-thinning hyaluronic acid hydrogel was performed. Serial tGFR measurements before and after treatment were used to assess the effect of hydrogel injection on kidney filtration. Urine and serum biomarkers of kidney function, and kidney histology were also quantified. Hydrogel injection did not affect kidney function, as assessed by tGFR. Results were in agreement with standard metrics of serum and urine biomarkers of injury as well as histological assessment of inflammation. The model developed provides a direct functional assessment of implant compatibility for the treatment of kidney disease and impact on kidney function.


Assuntos
Ácido Hialurônico , Hidrogéis , Animais , Feminino , Taxa de Filtração Glomerular , Injeções , Rim/patologia , Masculino , Camundongos
4.
JACC Basic Transl Sci ; 6(2): 119-133, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33665513

RESUMO

Growing epidemiological data demonstrate that acute kidney injury (AKI) is associated with long-term cardiovascular morbidity and mortality. Here, the authors present a 1-year study of cardiorenal outcomes following bilateral ischemia-reperfusion injury in male mice. These data suggest that AKI causes long-term dysfunction in the cardiac metabolome, which is associated with diastolic dysfunction and hypertension. Mice treated with the histone deacetylase inhibitor, ITF2357, had preservation of cardiac function and remained normotensive throughout the study. ITF2357 did not protect against the development of kidney fibrosis after AKI.

5.
Kidney Int ; 97(5): 966-979, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32081304

RESUMO

Neutrophil gelatinase associated lipocalin (NGAL, Lcn2) is the most widely studied biomarker of acute kidney injury (AKI). Previous studies have demonstrated that NGAL is produced by the kidney and released into the urine and plasma. Consequently, NGAL is currently considered a tubule specific injury marker of AKI. However, the utility of NGAL to predict AKI has been variable suggesting that other mechanisms of production are present. IL-6 is a proinflammatory cytokine increased in plasma by two hours of AKI and mediates distant organ effects. Herein, we investigated the role of IL-6 in renal and extra-renal NGAL production. Wild type mice with ischemic AKI had increased plasma IL-6, increased hepatic NGAL mRNA, increased plasma NGAL, and increased urine NGAL; all reduced in IL-6 knockout mice. Intravenous IL-6 in normal mice increased hepatic NGAL mRNA, plasma NGAL and urine NGAL. In mice with hepatocyte specific NGAL deletion (Lcn2hep-/-) and ischemic AKI, hepatic NGAL mRNA was absent, and plasma and urine NGAL were reduced. Since urine NGAL levels appear to be dependent on plasma levels, the renal handling of circulating NGAL was examined using recombinant human NGAL. After intravenous recombinant human NGAL administration to mice, human NGAL in mouse urine was detected by ELISA during proximal tubular dysfunction, but not in pre-renal azotemia. Thus, during AKI, IL-6 mediates hepatic NGAL production, hepatocytes are the primary source of plasma and urine NGAL, and plasma NGAL appears in the urine during proximal tubule dysfunction. Hence, our data change the paradigm by which NGAL should be interpreted as a biomarker of AKI.


Assuntos
Injúria Renal Aguda , Lipocalinas , Injúria Renal Aguda/diagnóstico , Proteínas de Fase Aguda/genética , Animais , Biomarcadores , Hepatócitos , Interleucina-6 , Lipocalina-2/genética , Camundongos
6.
J Am Soc Nephrol ; 30(6): 990-1005, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31072827

RESUMO

BACKGROUND: The duration of renal ischemia that is associated with (or leads to) renal injury in patients is uncertain, and a reverse translational research approach has been proposed to improve animal models of AKI to facilitate clinical translatability. We developed a two murine models of unilateral renal ischemia to match a recently published human study that investigated renal injury after unilateral renal ischemia during partial nephrectomy. METHODS: Eight 10-week-old C57BL/6 male mice underwent left UiAKI or sham procedure, with or without intra-operative ice packs. Functional, histological, and biomarker outcomes were followed at 2, 6 and 24 hours, or 14 or 28 days later. The 14 and 28 day cohorts were duplicated such that contralateral nephrectomy could be performed 3 days prior to sacrifice with functional measurements obtained to isolate the glomerular filtration rate of the injured kidney. RESULTS: The short-term outcomes correlated with the human study findings with urine and serum biomarkers of injury peaking around 24 hours and then normalizing, and reassuring immediate histological outcomes. Functional and histological outcomes at the later time-points (14 and 28 days) demonstrate an increase in fibrosis markers, and a reduction in glomerular filtration rate in the injured kidney, corresponding to the duration of ischemia, while serum and urine biomarkers remained reassuring. CONCLUSIONS: Our findings suggest that clinically available biomarkers of renal function are falsely reassuring against long-term injury following UiAKI, and that the duration of ischemia correlates with impaired function and increased fibrosis.


Assuntos
Injúria Renal Aguda/patologia , Isquemia/patologia , Nefrectomia/métodos , Traumatismo por Reperfusão/patologia , Animais , Biópsia por Agulha , Creatinina/sangue , Modelos Animais de Doenças , Progressão da Doença , Taxa de Filtração Glomerular , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Recuperação de Função Fisiológica , Traumatismo por Reperfusão/fisiopatologia , Fatores de Tempo
7.
Kidney Int ; 95(3): 590-610, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30709662

RESUMO

Acute kidney injury (AKI) is a systemic disease associated with widespread effects on distant organs, including the heart. Normal cardiac function is dependent on constant ATP generation, and the preferred method of energy production is via oxidative phosphorylation. Following direct ischemic cardiac injury, the cardiac metabolome is characterized by inadequate oxidative phosphorylation, increased oxidative stress, and increased alternate energy utilization. We assessed the impact of ischemic AKI on the metabolomics profile in the heart. Ischemic AKI was induced by 22 minutes of renal pedicle clamping, and 124 metabolites were measured in the heart at 4 hours, 24 hours, and 7 days post-procedure. Forty-one percent of measured metabolites were affected, with the most prominent changes observed 24 hours post-AKI. The post-AKI cardiac metabolome was characterized by amino acid depletion, increased oxidative stress, and evidence of alternative energy production, including a shift to anaerobic forms of energy production. These metabolomic effects were associated with significant cardiac ATP depletion and with echocardiographic evidence of diastolic dysfunction. In the kidney, metabolomics analysis revealed shifts suggestive of energy depletion and oxidative stress, which were reflected systemically in the plasma. This is the first study to examine the cardiac metabolome after AKI, and demonstrates that effects of ischemic AKI on the heart are akin to the effects of direct ischemic cardiac injury.


Assuntos
Injúria Renal Aguda/metabolismo , Síndrome Cardiorrenal/etiologia , Insuficiência Cardíaca Diastólica/etiologia , Isquemia/metabolismo , Estresse Oxidativo , Injúria Renal Aguda/complicações , Injúria Renal Aguda/etiologia , Animais , Síndrome Cardiorrenal/diagnóstico , Síndrome Cardiorrenal/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Metabolismo Energético , Coração/diagnóstico por imagem , Insuficiência Cardíaca Diastólica/diagnóstico , Insuficiência Cardíaca Diastólica/metabolismo , Humanos , Isquemia/complicações , Isquemia/etiologia , Rim/irrigação sanguínea , Rim/patologia , Masculino , Metaboloma , Metabolômica , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia
8.
Kidney Int ; 92(2): 365-376, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28318621

RESUMO

Although dialysis has been used in the care of patients with acute kidney injury (AKI) for over 50 years, very little is known about the potential benefits of uremic control on systemic complications of AKI. Since the mortality of AKI requiring renal replacement therapy (RRT) is greater than half in the intensive care unit, a better understanding of the potential of RRT to improve outcomes is urgently needed. Therefore, we sought to develop a technically feasible and reproducible model of RRT in a mouse model of AKI. Models of low- and high-dose peritoneal dialysis (PD) were developed and their effect on AKI, systemic inflammation, and lung injury after ischemic AKI was examined. High-dose PD had no effect on AKI, but effectively cleared serum IL-6, and dramatically reduced lung inflammation, while low-dose PD had no effect on any of these three outcomes. Both models of RRT using PD in AKI in mice reliably lowered urea in a dose-dependent fashion. Thus, use of these models of PD in mice with AKI has great potential to unravel the mechanisms by which RRT may improve the systemic complications that have led to increased mortality in AKI. In light of recent data demonstrating reduced serum IL-6 and improved outcomes with prophylactic PD in children, we believe that our results are highly clinically relevant.


Assuntos
Injúria Renal Aguda/terapia , Lesão Pulmonar/prevenção & controle , Modelos Animais , Diálise Peritoneal/métodos , Injúria Renal Aguda/sangue , Injúria Renal Aguda/complicações , Animais , Interleucina-6/sangue , Lesão Pulmonar/sangue , Lesão Pulmonar/etiologia , Camundongos , Diálise Peritoneal/instrumentação
9.
Kidney Int ; 91(5): 1057-1069, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28214022

RESUMO

Although it is well established that acute kidney injury (AKI) is a proinflammatory state, little is known about the endogenous counter-inflammatory response. IL-6 is traditionally considered a pro-inflammatory cytokine that is elevated in the serum in both human and murine AKI. However, IL-6 is known to have anti-inflammatory effects. Here we sought to investigate the role of IL-6 in the counter-inflammatory response after AKI, particularly in regard to the anti-inflammatory cytokine IL-10. Ischemic AKI was induced by bilateral renal pedicle clamping. IL-10-deficient mice had increased systemic and lung inflammation after AKI, demonstrating the role of IL-10 in limiting inflammation after AKI. We then sought to determine whether IL-6 mediates IL-10 production. Wild-type mice with AKI had a marked upregulation of splenic IL-10 that was absent in IL-6-deficient mice with AKI. In vitro, addition of IL-6 to splenocytes increased IL-10 production in CD4+ T cells, B cells, and macrophages. In vivo, CD4-deficient mice with AKI had reduced splenic IL-10 and increased lung myeloperoxidase activity. Thus, IL-6 directly increases IL-10 production and participates in the counter-inflammatory response after AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Pulmão/patologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Injúria Renal Aguda/patologia , Animais , Linfócitos B/metabolismo , Antígenos CD4/genética , Antígenos CD4/metabolismo , Modelos Animais de Doenças , Humanos , Interleucina-10/genética , Interleucina-6/genética , Pulmão/enzimologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxidase/metabolismo , Baço/citologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...