Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(1): e0059823, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38047751

RESUMO

Shiga toxin-producing Escherichia coli infections are difficult to treat due to the risk of antibiotic-induced stress upregulating the production of toxins, medical treatment is consequently limited to supportive care to prevent the development of hemolytic uremic syndrome (HUS). Here, we introduce a potentially therapeutic humanized mouse monoclonal antibody (Hu-mAb 2-5) targeting Stx2a, the most common Shiga toxin subtype identified from outbreaks. We demonstrate that Hu-mAb 2-5 has low immunogenicity in healthy adults ex vivo and high neutralizing efficacy in vivo, protecting mice from mortality and HUS-related tissue damage.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Humanos , Adulto , Animais , Camundongos , Toxina Shiga/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Toxina Shiga II , Anticorpos Monoclonais Humanizados/uso terapêutico , Síndrome Hemolítico-Urêmica/tratamento farmacológico
2.
Commun Biol ; 5(1): 1401, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36543914

RESUMO

Independent studies demonstrate the significance of gut microbiota on the pathogenesis of chronic lung diseases; yet little is known regarding the role of the gut microbiota in lung fibrosis progression. Here we show, using the bleomycin murine model to quantify lung fibrosis in C57BL/6 J mice housed in germ-free, animal biosafety level 1 (ABSL-1), or animal biosafety level 2 (ABSL-2) environments, that germ-free mice are protected from lung fibrosis, while ABSL-1 and ABSL-2 mice develop mild and severe lung fibrosis, respectively. Metagenomic analysis reveals no notable distinctions between ABSL-1 and ABSL-2 lung microbiota, whereas greater microbial diversity, with increased Bifidobacterium and Lactobacilli, is present in ABSL-1 compared to ABSL-2 gut microbiota. Flow cytometric analysis reveals enhanced IL-6/STAT3/IL-17A signaling in pulmonary CD4 + T cells of ABSL-2 mice. Fecal transplantation of ABSL-2 stool into germ-free mice recapitulated more severe fibrosis than transplantation of ABSL-1 stool. Lactobacilli supernatant reduces collagen 1 A production in IL-17A- and TGFß1-stimulated human lung fibroblasts. These findings support a functional role of the gut microbiota in augmenting lung fibrosis severity.


Assuntos
Lesão Pulmonar Aguda , Microbioma Gastrointestinal , Fibrose Pulmonar , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Interleucina-17 , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia
3.
mSphere ; 6(6): e0092221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878292

RESUMO

Aspergillus fumigatus isolates display significant heterogeneity in growth, virulence, pathology, and inflammatory potential in multiple murine models of invasive aspergillosis. Previous studies have linked the initial germination of a fungal isolate in the airways to the inflammatory and pathological potential, but the mechanism(s) regulating A. fumigatus germination in the airways is unresolved. To explore the genetic basis for divergent germination phenotypes, we utilized a serial passaging strategy in which we cultured a slow germinating strain (AF293) in a murine-lung-based medium for multiple generations. Through this serial passaging approach, a strain emerged with an increased germination rate that induces more inflammation than the parental strain (herein named LH-EVOL for lung homogenate evolved). We identified a potential loss-of-function allele of Afu5g08390 (sskA) in the LH-EVOL strain. The LH-EVOL strain had a decreased ability to induce the SakA-dependent stress pathway, similar to AF293 ΔsskA and CEA10. In support of the whole-genome variant analyses, sskA, sakA, or mpkC loss-of-function strains in the AF293 parental strain increased germination both in vitro and in vivo. Since the airway surface liquid of the lungs contains low glucose levels, the relationship of low glucose concentration on germination of these mutant AF293 strains was examined; interestingly, in low glucose conditions, the sakA pathway mutants exhibited an enhanced germination rate. In conclusion, A. fumigatus germination in the airways is regulated by SskA through the SakA mitogen-activated protein kinase (MAPK) pathway and drives enhanced disease initiation and inflammation in the lungs. IMPORTANCE Aspergillus fumigatus is an important human fungal pathogen particularly in immunocompromised individuals. Initiation of growth by A. fumigatus in the lung is important for its pathogenicity in murine models. However, our understanding of what regulates fungal germination in the lung environment is lacking. Through a serial passage experiment using lung-based medium, we identified a new strain of A. fumigatus that has increased germination potential and inflammation in the lungs. Using this serially passaged strain, we found it had a decreased ability to mediate signaling through the osmotic stress response pathway. This finding was confirmed using genetic null mutants demonstrating that the osmotic stress response pathway is critical for regulating growth in the murine lungs. Our results contribute to the understanding of A. fumigatus adaptation and growth in the host lung environment.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/metabolismo , Pulmão/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Aspergillus fumigatus/genética , Proteínas Fúngicas/genética , Inflamação , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/genética , Pressão Osmótica , Transdução de Sinais , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...