Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 127(Pt 13): 2967-82, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24816560

RESUMO

By operating as both a subunit of the cadherin complex and a key component of Wnt signalling, ß-catenin acts as the lynchpin between cell-cell contact and transcriptional regulation of proliferation, coordinating epithelial tissue homeostasis and regeneration. The integration of multiple growth-regulatory inputs with ß-catenin signalling has been observed in cancer-derived cells, yet the existence of pathway crosstalk in normal cells is unknown. Using a highly regenerative normal human epithelial culture system that displays contact inhibition, we demonstrate that the receptor tyrosine kinase (RTK)-driven MAPK and Wnt-ß-catenin signalling axes form a bidirectional positive-feedback loop to drive cellular proliferation. We show that ß-catenin both drives and is regulated by proliferative signalling cues, and its downregulation coincides with the switch from proliferation to contact-inhibited quiescence. We reveal a novel contextual interrelationship whereby positive and negative feedback between three major signalling pathways - EGFR-ERK, PI3K-AKT and Wnt-ß-catenin - enable autocrine-regulated tissue homeostasis as an emergent property of physical interactions between cells. Our work has direct implications for normal epithelial tissue homeostasis and provides insight as to how dysregulation of these pathways could drive excessive and sustained cellular growth in disease.


Assuntos
Epitélio/fisiologia , Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases , Regeneração/fisiologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Epitélio/metabolismo , Humanos
2.
Am J Pathol ; 183(4): 1128-1136, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23933063

RESUMO

The transcription factor octamer-binding protein 4 (Oct4; encoded by POU5F1) has a key role in maintaining embryonic stem cell pluripotency during early embryonic development and it is required for generation of induced pluripotent stem cells. Controversy exists concerning Oct4 expression in somatic tissues, with reports that Oct4 is expressed in normal and in neoplastic urothelium carrying implications for a bladder cancer stem cell phenotype. Here, we show that the pluripotency-associated Oct4A transcript was absent from cultures of highly regenerative normal human urothelial cells and from low-grade to high-grade urothelial carcinoma cell lines, whereas alternatively spliced variants and transcribed pseudogenes were expressed in abundance. Immunolabeling and immunoblotting studies confirmed the absence of Oct4A in normal and neoplastic urothelial cells and tissues, but indicated the presence of alternative isoforms or potentially translated pseudogenes. The stable forced expression of Oct4A in normal human urothelial cells in vitro profoundly inhibited growth and affected morphology, but protein expression was rapidly down-regulated. Our findings demonstrate that pluripotency-associated isoform Oct4A is not expressed by normal or malignant human urothelium and therefore is unlikely to play a role in a cancer stem cell phenotype. However, our findings also indicate that urothelium expresses a variety of other Oct4 splice-variant isoforms and transcribed pseudogenes that warrant further study.


Assuntos
Fator 3 de Transcrição de Octâmero/genética , Pseudogenes/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Urotélio/metabolismo , Urotélio/patologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Immunoblotting , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transcrição Gênica
3.
Am J Physiol Renal Physiol ; 305(3): F396-406, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23720349

RESUMO

In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca²âº. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca²âº and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca²âº promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting.


Assuntos
Receptores Purinérgicos P2/biossíntese , Canais de Potencial de Receptor Transitório/biossíntese , Urotélio/metabolismo , Trifosfato de Adenosina/farmacologia , Adulto , Idoso , Cálcio/metabolismo , Capsaicina/farmacologia , Células Cultivadas , Primers do DNA , Homeostase/fisiologia , Humanos , Pessoa de Meia-Idade , Antagonistas do Receptor Purinérgico P2/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Ureter/patologia , Bexiga Urinária/patologia , Urotélio/lesões , Cicatrização/fisiologia
4.
PLoS One ; 7(9): e45339, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028946

RESUMO

It is generally considered that the bladder is impervious and stores urine in unmodified form on account of the barrier imposed by the highly-specialised uro-epithelial lining. However, recent evidence, including demonstration of aquaporin (AQP) expression by human urothelium, suggests that urothelium may be able to modify urine content. Here we have we applied functional assays to an in vitro-differentiated normal human urothelial cell culture system and examined both whether AQP expression was responsive to changes in osmolality, and the effects of blocking AQP channels on water and urea transport. AQP3 expression was up-regulated by increased osmolality, but only in response to NaCl. A small but similar effect was seen with AQP9, but not AQP4 or AQP7. Differentiated urothelium revealed significant barrier function (mean TER 3862 Ω.cm(2)), with mean diffusive water and urea permeability coefficients of 6.33×10(-5) and 2.45×10(-5) cm/s, respectively. AQP blockade with mercuric chloride resulted in decreased water and urea flux. The diffusive permeability of urothelial cell sheets remained constant following conditioning in hyperosmotic NaCl, but there was a significant increase in water and urea flux across an osmotic gradient. Taken collectively with evidence emerging from studies in other species, our results support an active role for human urothelium in sensing and responding to hypertonic salt concentrations through alterations in AQP protein expression, with AQP channels providing a mechanism for modifying urine composition. These observations challenge the traditional concept of an impermeable bladder epithelium and suggest that the urothelium may play a modulatory role in water and salt homeostasis.


Assuntos
Aquaporinas/metabolismo , Cloreto de Sódio/farmacologia , Urotélio/citologia , Aquaporina 3/genética , Aquaporina 3/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Aquaporinas/genética , Transporte Biológico , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Microscopia de Fluorescência , Concentração Osmolar , Ureia/metabolismo , Urotélio/efeitos dos fármacos , Água/metabolismo
5.
PLoS One ; 7(12): e51404, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284691

RESUMO

Transforming growth factor (TGF) ß has diverse and sometimes paradoxical effects on cell proliferation and differentiation, presumably reflecting a fundamental but incompletely-understood role in regulating tissue homeostasis. It is generally considered that downstream activity is modulated at the ligand:receptor axis, but microarray analysis of proliferative versus differentiating normal human bladder epithelial cell cultures identified unexpected transcriptional changes in key components of the canonical TGFß R/activin signalling pathway associated with cytodifferentiation. Changes included upregulation of the transcriptional modulator SMAD3 and downregulation of inhibitory modulators SMURF2 and SMAD7. Functional analysis of the signalling pathway revealed that non-differentiated normal human urothelial cells responded in paracrine mode to TGFß by growth inhibition, and that exogenous TGFß inhibited rather than promoted differentiation. By contrast, in differentiated cell cultures, SMAD3 was activated upon scratch-wounding and was involved in promoting tissue repair. Exogenous TGFß enhanced the repair and resulted in hyperplastic scarring, indicating a feedback loop implicit in an autocrine pathway. Thus, the machinery for autocrine activation of the SMAD3-mediated TGFßR pathway is established during urothelial differentiation, but signalling occurs only in response to a trigger, such as wounding. Our study demonstrates that the circuitry of the TGFßR pathway is defined transcriptionally within a tissue-specific differentiation programme. The findings provide evidence for re-evaluating the role of TGFßR signalling in epithelial homeostasis as an autocrine-regulated pathway that suppresses differentiation and promotes tissue repair. This provides a new paradigm to help unravel the apparently diverse and paradoxical effect of TGFß signalling on cell proliferation and differentiation.


Assuntos
Comunicação Autócrina , Diferenciação Celular , Comunicação Parácrina , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Urotélio/citologia , Animais , Comunicação Autócrina/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HeLa , Homeostase/efeitos dos fármacos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Comunicação Parácrina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Cicatrização/efeitos dos fármacos
6.
Eur Urol ; 60(1): 141-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21353380

RESUMO

BACKGROUND: The development of urothelial malignancy is not solely a consequence of loss of proliferation constraints but also involves loss of cellular differentiation, defined histopathologically as grade. Although tumour grade is an independent prognostic marker for urothelial carcinoma (UC), the molecular events underpinning the loss of urothelial differentiation are poorly understood. OBJECTIVE: To examine the effect of gene alterations implicated in UC development on the ability of human urothelial cells to undergo molecular differentiation and form a functional urothelial barrier. DESIGN, SETTING, AND PARTICIPANTS: Laboratory study. INTERVENTION: Normal human urothelial (NHU) cell cultures were transduced with recombinant retroviruses to produce stable sublines overexpressing wild-type or oncogenic mutated fibroblast growth factor receptor 3 or human telomerase reverse transcriptase (hTERT). Previously generated NHU sublines carrying dominant-negative CDK4 and p53 mutant genes or immortalised with the human papillomavirus 16 E6 oncoprotein were included. MEASUREMENTS: The activity of introduced transgenes was demonstrated by comparing phenotypes of transgene-expressing and isogenic control NHU cells. Modified and control sublines were compared for changes in generational potential (life span) and capacity to respond to differentiation-inducing signals by transcript expression of uroplakins 2 and 3. The ability to form a barrier epithelium was assessed by measuring the transepithelial electrical resistance. RESULTS AND LIMITATIONS: By contrast to tumour suppressor loss of function or oncogene overactivation, hTERT overexpression alone led to life span extension and immortalisation. The hTERT immortalised cells carried no gross genomic alterations but became progressively insensitive to differentiation signals and lost the ability to form an epithelial barrier. Further characterisation of hTERT cells revealed a downregulation of p16 cyclin-dependent kinase inhibitor expression and loss of responsiveness to peroxisome proliferator-activated receptor γ, providing mechanistic explanations for the subjugation of senescence constraints and the abrogation of differentiation capability, respectively. Although immortalised urothelial cell lines without karyotypic aberrations may be generated, such cell lines are compromised in terms of differentiation and functional capacity. CONCLUSIONS: Overexpression of hTERT promotes development of an immortalised differentiation-insensitive urothelial cell phenotype. Although such cells offer a useful insight into the grade/stage paradigm of UC, they have limited value for investigating normal urothelial cell/tissue biology and physiology.


Assuntos
Diferenciação Celular/genética , Células Epiteliais/citologia , Urotélio/citologia , Proliferação de Células , Transformação Celular Neoplásica , Regulação da Expressão Gênica , Humanos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Telomerase/genética
7.
PLoS One ; 5(10): e13621, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21049033

RESUMO

BACKGROUND: Despite the well-documented association between loss of E-cadherin and carcinogenesis, as well as the link between restoration of its expression and suppression of proliferation in carcinoma cells, the ability of E-cadherin to modulate growth-promoting cell signalling in normal epithelial cells is less well understood and frequently contradictory. The potential for E-cadherin to co-ordinate different proliferation-associated signalling pathways has yet to be fully explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a normal human urothelial (NHU) cell culture system and following a calcium-switch approach, we demonstrate that the stability of NHU cell-cell contacts differentially regulates the Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-Regulated Kinase (ERK) and Phosphatidylinositol 3-Kinase (PI3-K)/AKT pathways. We show that stable cell contacts down-modulate the EGFR/ERK pathway, whilst inducing PI3-K/AKT activity, which transiently enhances cell growth at low density. Functional inactivation of E-cadherin interferes with the capacity of NHU cells to form stable calcium-mediated contacts, attenuates E-cadherin-mediated PI3-K/AKT induction and enhances NHU cell proliferation by allowing de-repression of the EGFR/ERK pathway and constitutive activation of ß-catenin-TCF signalling. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that E-cadherin can differentially and concurrently regulate specific growth-related signalling pathways in a context-specific fashion, with direct, functional consequences for cell proliferation and population growth. Our observations not only reveal a novel, complex role for E-cadherin in normal epithelial cell homeostasis and tissue regeneration, but also provide the basis for a more complete understanding of the consequences of E-cadherin loss on malignant transformation.


Assuntos
Caderinas/metabolismo , Proliferação de Células , Transdução de Sinais , Células Cultivadas , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição TCF/metabolismo , Urotélio/citologia , Urotélio/enzimologia , Urotélio/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...