Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38746380

RESUMO

Background: Human males and females show differences in the incidence of neutrophil-associated diseases such as systemic lupus erythematosus, rheumatoid arthritis, and reactive arthritis, and differences in neutrophil physiological responses such as a faster response to the chemorepellent SLIGKV. Little is known about the basis of sex-based differences in human neutrophils. Methods: Starting with human neutrophils from healthy donors, we used RNA-seq to examine total mRNA profiles, mRNAs not associated with ribosomes and thus not being translated, mRNAs in monosomes, and mRNAs in polysomes and thus heavily translated. We used mass spectrometry systems to identify proteins and phosphoproteins. Results: There were sex-based differences in the translation of 24 mRNAs. There were 132 proteins with higher levels in male neutrophils; these tended to be associated with RNA regulation, ribosome, and phosphoinositide signaling pathways, whereas 30 proteins with higher levels in female neutrophils were associated with metabolic processes, proteosomes, and phosphatase regulatory proteins. Male neutrophils had increased phosphorylation of 32 proteins. After exposure to SLIGKV, male neutrophils showed a faster response in terms of protein phosphorylation compared to female neutrophils. Conclusions: Male neutrophils have higher levels of proteins and higher phosphorylation of proteins associated with RNA processing and signaling pathways, while female neutrophils have higher levels of proteins associated with metabolism and proteolytic pathways. This suggests that male neutrophils might be more ready to adapt to a new environment, and female neutrophils might be more effective at responding to pathogens. This may contribute to the observed sex-based differences in neutrophil behavior and neutrophil-associated disease incidence and severity.

2.
J Cell Sci ; 136(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37259831

RESUMO

During developmental and immune responses, cells move towards or away from some signals. Although much is known about chemoattraction, chemorepulsion (the movement of cells away from a stimulus) remains poorly understood. Proliferating Dictyostelium discoideum cells secrete a chemorepellent protein called AprA. Examining existing knockout strains, we previously identified proteins required for AprA-induced chemorepulsion, and a genetic screen suggested that the enzyme phosphatidylinositol phosphate kinase A (PIPkinA, also known as Pik6) might also be needed for chemorepulsion. Here, we show that cells lacking PIPkinA are not repelled by AprA, and that this phenotype is rescued by expression of PIPkinA. To bias cell movement, AprA inhibits Ras activation at the side of the cell closest to the source of AprA, and we find that PIPkinA is required for AprA to inhibit Ras activation. PIPkinA decreases levels of phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3], and possibly because of these effects, potentiates phagocytosis and inhibits cell proliferation. Cells lacking PIPkinA show normal AprA binding, suggesting that PIPkinA regulates chemorepulsion at a step between the AprA receptor and AprA inhibition of Ras activation.


Assuntos
Dictyostelium , Dictyostelium/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proliferação de Células , Testes Genéticos
3.
J Cell Sci ; 135(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36017702

RESUMO

Dictyostelium discoideum is a unicellular eukaryote that eats bacteria, and eventually outgrows the bacteria. D. discoideum cells accumulate extracellular polyphosphate (polyP), and the polyP concentration increases as the local cell density increases. At high cell densities, the correspondingly high extracellular polyP concentrations allow cells to sense that they are about to outgrow their food supply and starve, causing the D. discoideum cells to inhibit their proliferation. In this report, we show that high extracellular polyP inhibits exocytosis of undigested or partially digested nutrients. PolyP decreases plasma membrane recycling and apparent cell membrane fluidity, and this requires the G protein-coupled polyP receptor GrlD, the polyphosphate kinase Ppk1 and the inositol hexakisphosphate kinase I6kA. PolyP alters protein contents in detergent-insoluble crude cytoskeletons, but does not significantly affect random cell motility, cell speed or F-actin levels. Together, these data suggest that D. discoideum cells use polyP as a signal to sense their local cell density and reduce cell membrane fluidity and membrane recycling, perhaps as a mechanism to retain ingested food when the cells are about to starve. This article has an associated First Person interview with the first author of the paper.


Assuntos
Dictyostelium , Actinas/metabolismo , Detergentes/metabolismo , Dictyostelium/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Nutrientes , Polifosfatos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
4.
J Immunol ; 209(2): 354-367, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35793910

RESUMO

A considerable amount is known about how eukaryotic cells move toward an attractant, and the mechanisms are conserved from Dictyostelium discoideum to human neutrophils. Relatively little is known about chemorepulsion, where cells move away from a repellent signal. We previously identified pathways mediating chemorepulsion in Dictyostelium, and here we show that these pathways, including Ras, Rac, protein kinase C, PTEN, and ERK1 and 2, are required for human neutrophil chemorepulsion, and, as with Dictyostelium chemorepulsion, PI3K and phospholipase C are not necessary, suggesting that eukaryotic chemorepulsion mechanisms are conserved. Surprisingly, there were differences between male and female neutrophils. Inhibition of Rho-associated kinases or Cdc42 caused male neutrophils to be more repelled by a chemorepellent and female neutrophils to be attracted to the chemorepellent. In the presence of a chemorepellent, compared with male neutrophils, female neutrophils showed a reduced percentage of repelled neutrophils, greater persistence of movement, more adhesion, less accumulation of PI(3,4,5)P3, and less polymerization of actin. Five proteins associated with chemorepulsion pathways are differentially abundant, with three of the five showing sex dimorphism in protein localization in unstimulated male and female neutrophils. Together, this indicates a fundamental difference in a motility mechanism in the innate immune system in men and women.


Assuntos
Dictyostelium , Neutrófilos , Actinas/metabolismo , Quimiotaxia , Dictyostelium/metabolismo , Feminino , Humanos , Masculino , Caracteres Sexuais
5.
J Leukoc Biol ; 112(6): 1399-1411, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35899930

RESUMO

Some extracellular glycoconjugates have sialic acid as the terminal sugar, and sialidases are enzymes that remove this sugar. Mammals have 4 sialidases and can be elevated in inflammation and fibrosis. In this report, we show that incubation of human neutrophils with the extracellular human sialidase NEU3, but not NEU1, NEU2 or NEU4, induces human male and female neutrophils to change from a round to a more amoeboid morphology, causes the primed human neutrophil markers CD11b, CD18, and CD66a to localize to the cell cortex, and decreases the localization of the unprimed human neutrophil markers CD43 and CD62-L at the cell cortex. NEU3, but not the other 3 sialidases, also causes human male and female neutrophils to increase their F-actin content. Human neutrophils treated with NEU3 show a decrease in cortical levels of Sambucus nigra lectin staining and an increase in cortical levels of peanut agglutinin staining, indicating a NEU3-induced desialylation. The inhibition of NEU3 by the NEU3 inhibitor 2-acetylpyridine attenuated the NEU3 effect on neutrophil morphology, indicating that the effect of NEU3 is dependent on its enzymatic activity. Together, these results indicate that NEU3 can prime human male and female neutrophils, and that NEU3 is a potential regulator of inflammation.


Assuntos
Neuraminidase , Neutrófilos , Feminino , Humanos , Masculino , Inflamação , Ácido N-Acetilneuramínico , Neuraminidase/farmacologia , Açúcares
6.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-35622529

RESUMO

Chemorepulsion, the biased migration of a cell away from a signal, is essential for many biological processes and the ability to manipulate chemorepulsion could lead to new therapeutics for a variety of diseases. However, little is known about eukaryotic cell chemorepulsion. Utilizing the model organism Dictyostelium discoideum, we previously identified an endogenous chemorepellent protein secreted by D. discoideum cells called AprA, and proteins involved in the AprA-induced chemorepulsion pathway including the G protein-coupled receptor GrlH, G beta and G protein alpha 8 protein subunits, protein kinase A, components of the mammalian target of rapamycin complex 2 (mTORC2), phospholipase A, PTEN and a PTEN-like phosphatase (CnrN), a retinoblastoma orthologue (RblA), extracellular signal-regulated kinase 1 (Erk1), p-21 activated protein kinase D (PakD), and the Ras proteins RasC and RasG. In this report, we used a genetic screen to identify 17 additional proteins involved in the AprA-induced chemorepulsion pathway .

7.
Mol Biol Cell ; 33(1): ar9, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788129

RESUMO

The ability of cells to sense chemical gradients is essential during development, morphogenesis, and immune responses. Although much is known about chemoattraction, chemorepulsion remains poorly understood. Proliferating Dictyostelium cells secrete a chemorepellent protein called AprA. AprA prevents pseudopod formation at the region of the cell closest to the source of AprA, causing the random movement of cells to be biased away from the AprA. Activation of Ras proteins in a localized sector of a cell cortex helps to induce pseudopod formation, and Ras proteins are needed for AprA chemorepulsion. Here we show that AprA locally inhibits Ras cortical activation through the G protein-coupled receptor GrlH, the G protein subunits Gß and Gα8, Ras protein RasG, protein kinase B, the p21-activated kinase PakD, and the extracellular signal-regulated kinase Erk1. Diffusion calculations and experiments indicate that in a colony of cells, high extracellular concentrations of AprA in the center can globally inhibit Ras activation, while a gradient of AprA that naturally forms at the edge of the colony allows cells to activate Ras at sectors of the cell other than the sector of the cell closest to the center of the colony, effectively inducing both repulsion from the colony and cell differentiation. Together, these results suggest that a pathway that inhibits local Ras activation can mediate chemorepulsion.


Assuntos
Inibição de Migração Celular/fisiologia , Dictyostelium/efeitos dos fármacos , Dictyostelium/metabolismo , Inibição de Migração Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Protozoários/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases Ativadas por p21/metabolismo , Proteínas ras/metabolismo
8.
Front Cell Dev Biol ; 9: 710005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350188

RESUMO

Acute respiratory distress syndrome (ARDS) involves damage to lungs causing an influx of neutrophils from the blood into the lung airspaces, and the neutrophils causing further damage, which attracts more neutrophils in a vicious cycle. There are ∼190,000 cases of ARDS per year in the US, and because of the lack of therapeutics, the mortality rate is ∼40%. Repelling neutrophils out of the lung airspaces, or simply preventing neutrophil entry, is a potential therapeutic. In this minireview, we discuss how our lab noticed that a protein called AprA secreted by growing Dictyostelium cells functions as a repellent for Dictyostelium cells, causing cells to move away from a source of AprA. We then found that AprA has structural similarity to a human secreted protein called dipeptidyl peptidase IV (DPPIV), and that DPPIV is a repellent for human neutrophils. In animal models of ARDS, inhalation of DPPIV or DPPIV mimetics blocks neutrophil influx into the lungs. To move DPPIV or DPPIV mimetics into the clinic, we need to know how this repulsion works to understand possible drug interactions and side effects. Combining biochemistry and genetics in Dictyostelium to elucidate the AprA signal transduction pathway, followed by drug studies in human neutrophils to determine similarities and differences between neutrophil and Dictyostelium chemorepulsion, will hopefully lead to the safe use of DPPIV or DPPIV mimetics in the clinic.

9.
Int J Dev Biol ; 63(8-9-10): 395-405, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31840778

RESUMO

In the last few decades, we have learned a considerable amount about how eukaryotic cells communicate with each other, and what it is the cells are telling each other. The simplicity of Dictyostelium discoideum, and the wide variety of available tools to study this organism, makes it the equivalent of a hydrogen atom for cell and developmental biology. Studies using Dictyostelium have pioneered a good deal of our understanding of eukaryotic cell communication. In this review, we will present a brief overview of how Dictyostelium cells use extracellular signals to attract each other, repel each other, sense their local cell density, sense whether the nearby cells are starving or stressed, count themselves to organize the formation of structures containing a regulated number of cells, sense the volume they are in, and organize their multicellular development. Although we are probably just beginning to learn what the cells are telling each other, the elucidation of Dictyostelium extracellular signals has already led to the development of possible therapeutics for human diseases.


Assuntos
Comunicação Celular , Fatores Quimiotáticos/metabolismo , Dictyostelium/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Trifosfato de Adenosina/metabolismo , Amônia/farmacologia , Meios de Cultivo Condicionados , AMP Cíclico/metabolismo , Dictyostelium/genética , Morfogênese , Policetídeos/metabolismo , Polifosfatos/metabolismo
10.
Biol Bull ; 237(2): 111-118, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31714853

RESUMO

Despite the fact that Hydra has been studied for more than 200 years, we know surprisingly little about its life history. We show that Hydra vulgaris embryos hatch sporadically over a period ranging from a few days to nine months. We also report, for what seems to be the first time, the presence of Hydra in a vernal pool. Phylogenetic analysis and sexual crossing show that this Hydra is a member of the cosmopolitan Vulgaris clade and is not reproductively isolated from other members of the clade. Our findings lead us to hypothesize that Hydra evolved in an unstable freshwater habitat in which survival required that its life cycle include the use of a bet-hedging reproductive strategy and the formation of an embryo that is desiccation resistant and that can remain dormant for long periods of time.


Assuntos
Hydra , Animais , Filogenia , Reprodução , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...