Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 6(12): e05697, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33367126

RESUMO

Genetic and metabolic diversities of rhizobacteria are the fundamental sources for their adaptation to cope with abiotic and biotic stresses in order to enhance growth and health of plants in the soil. Thus, this study was initiated to assess the genetic and metabolic diversities of rhizobacteria isolated from plants grown in degraded soil through BOX-PCR and partial sequencing of 16S rRNA genes. A total of eighty isolates were recovered and subjected to phenotypic profiling of carbohydrate and amino acid utilization, BOX PCR and 16S rRNA profiling. The phenotypic profiling showed remarkable metabolic versatility with Ochrobactrum spp, Pseudomonas spp and Klebsiella spp, and BOX-PCR showed greater discriminatory power for fingerprinting of rhizobacterial isolates with high degree of polymorphism. Bacillus spp showed the highest Simpson's diversity Index. The 16S rRNA genes sequence assigned the rhizobacteria to phyla Proteobacteria with Gammaproteobacteria and Alphaproteobacteria classes and Firmicutes with Bacilli class. The data also showed that the most dominant species were Pseudomonas and Ochrobactrum. Genetic and metabolic diversities of the rhizobacterial isolates reveal the potential of these microbes for plant growth improvement under water deficient soil after testing other inoculant traits.

2.
Int J Microbiol ; 2020: 8897998, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178283

RESUMO

Drought stress (DS) is the most impacting global phenomenon affecting the ecological balance of a particular habitat. The search for potential plant growth-promoting rhizobacteria (PGPR) capable of enhancing plant tolerance to drought stress is needed. Thus, this study was initiated to evaluate the effect of inoculating Acacia abyssinica seedlings with PGPR isolated from rhizosphere soil of Ethiopia to enhance DS tolerance. The strains were selected based on in vitro assays associated with tolerance to drought and other beneficial traits such as salinity, acidity, temperature, heavy metal tolerances, biofilm formation, and exopolysaccharide (EPS) production. The strains with the best DS tolerance ability were selected for the greenhouse trials with acacia plants. The results indicate that out of 73 strains, 10 (14%) were completely tolerant to 40% polyethylene glycol. Moreover, 37% of the strains were strong biofilm producers, while 66 (90.41%) were EPS producers with a better production in the medium containing sucrose at 28 ± 2°C and pH 7 ± 0.2. Strains PS-16 and RS-79 showed tolerance to 11% NaCl. All the strains were able to grow in wider ranges of pH (4-10) and temperature (15-45°C) and had high tolerance to heavy metals. The inoculated bacterial strains significantly (p ≤ 0.05) increased root and shoot length and dry biomass of acacia plants. One of the strains identified as P. fluorescens strain FB-49 was outstanding in enhancing DS tolerance compared to the single inoculants and comparable to consortia. Stress-tolerant PGPR could be used to enhance acacia DS tolerance after testing other phytobeneficial traits.

3.
Ecotoxicology ; 22(7): 1145-54, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23839512

RESUMO

To elucidate the action mechanism of environmental androgenic chemicals on fish reproductive activity by transient stimulation in heavily polluted areas, individuals of the hermaphrodite fish Kryptolebias marmoratus were injected once with six concentrations of methyltestosterone (MT) (0.1, 1, 5, 10, 50, and 100 µg/g BW) intraperitoneally. The fish were sampled at intervals of 7, 15, and 30 days after a single injection. At 7 days after injection, mature oocytes were not observed in the MT-exposed groups except for the group exposed to 0.1 µg MT, while testicular development was not remarkably different between any of the groups. Also, at 7 days after injection, hepatic estrogen receptor α (ERα) and vitellogenin (VTG) mRNA abundance decreased significantly in the MT-exposed groups despite no significant difference in plasma 17ß-estradiol (E2) levels between any of the groups. This significant difference in VTG mRNA between the control and the MT-exposed groups persisted until 30 days after injection, although ERα mRNA abundance was not statistically different between any groups at 30 days after injection. Our results clearly show that a single injection of MT inhibits ovarian development rather than testicular development in the hermaphroditic gonad of K. marmoratus. Furthermore, our results demonstrate that a single injection of MT interfered with hepatic VTG mRNA synthesis mediated by the suppression of hepatic ERα mRNA transcription.


Assuntos
Peixes/metabolismo , Organismos Hermafroditas/efeitos dos fármacos , Metiltestosterona/efeitos adversos , Reprodução/efeitos dos fármacos , Animais , Estradiol/sangue , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Organismos Hermafroditas/crescimento & desenvolvimento , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Diferenciação Sexual/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento , Vitelogeninas/genética , Vitelogeninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...