Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 30(1): 11, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095730

RESUMO

CONTEXT: We conduct comparative numerical studies of the effects of electric dipole field and electromagnetic radiation field on the amino acids leucine and isoleucine. Since they are structural isomers, distinguishing them by mass is a non-trivial task, while determination of protein structure can be crucial on many occasions. We emphasize the influence of the magnetic field of radiation by utilizing a modified basis sets with correction coefficients to the [Formula: see text] and [Formula: see text] orbitals following the Anisotropic Gaussian Type Orbitals method. Studying the electric potential of the isomers in dipole electric or electromagnetic fields proves that the different layout of leucine vs isoleucine is the main reason why some fragments could not be formed during chemical bond cleavage. Comparison of the chemical structure of the fragments created due to the decomposition of the isomers in the dipole electric or electromagnetic fields shows that their decomposition products are different. These findings can be used also for discrimination between the two isoleucine conformers, for which the cleavage starts at different values of the dipole electric field strength, as well as the products of the decomposition reaction are not identical. Our numerical calculations of the fragmentation outcomes, taking into account the magnetic field effects, can serve as a guidance for discrimination between the isomers/conformers. METHODS: We applied the Becke's three-parameter hybrid functional approach with non-local correlation by Lee, Yang, and Parr ([Formula: see text]), together with the [Formula: see text] basis set as it is implemented in the GAUSSIAN09 quantum chemistry package in order to obtain the most stable conformers of leucine and isoleucine. We used the options provided by GAUSSIAN09 to add finite external field in order to perform the calculations of leucine and isoleucine in the electric dipole and electromagnetic fields. The Anisotropic Gaussian Type Orbitals method was used to obtain the correction coefficients which modify the original [Formula: see text] basis set in order to account for the effects of magnetic field of radiation. Results were visualized and the electrical potentials analyzed by the Molden visualization program.

2.
Opt Express ; 31(22): 37094-37104, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017846

RESUMO

Achieving a substantial blockade radius is crucial for developing scalable and efficient quantum communication and computation. In this theoretical study, we present the enhancement of the Rydberg blockade radius by utilizing Förster resonance. This phenomenon occurs when the energy difference between two initial Rydberg states closely matches that between the corresponding final Rydberg states, giving rise to a resonant energy transfer process. We employ quantum defect theory to numerically calculate the 87Rb-87Rb Rydberg atomic pair, enabling us to accurately estimate the van der Waals interaction. Our investigation reveals that when the principal quantum numbers of two Rydberg states differ only slightly, the Förster transition is rarely able to achieve a large blockade radius. However, in cases where the principal quantum numbers differ significantly, we substantially improve the Rydberg blockade radius. Most notably, we identify transition channels exhibiting an extensive blockade radius, surpassing 50 µm. This significant increase in the blockade radius enables larger-scale quantum operations and advances quantum technologies, with broad implications for achieving long-range quantum entanglement and robust quantum processes.

3.
Materials (Basel) ; 16(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36902933

RESUMO

We present the results of numerical calculations of the effect of an electromagnetic field of radiation on valine, and compare them to experimental results available in the literature. We specifically focus on the effects of a magnetic field of radiation, by introducing modified basis sets, which incorporate correction coefficients to the s-, p- or only the p-orbitals, following the method of anisotropic Gaussian-type orbitals. By comparing the bond length, angle, dihedral angles, and condense-to-atom-all electrons, obtained without and with the inclusion of dipole electric and magnetic fields, we concluded that, while the charge redistribution occurs due to the electric field influence, the changes in the dipole momentum projection onto the y- and z- axes are caused by the magnetic field. At the same time, the values of the dihedral angles could vary by up to 4 degrees, due to the magnetic field effects. We further show that taking into account the magnetic field in the fragmentation processes provides better fitting of the experimentally obtained spectra: thus, numerical calculations which include magnetic field effects can serve as a tool for better predictions, as well as for analysis of the experimental outcomes.

4.
Sci Rep ; 11(1): 20721, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671063

RESUMO

We propose a theoretical scheme for creating a two-dimensional Electromagnetically Induced Grating in a three-level [Formula: see text]-type atomic system interacting with a weak probe field and two simultaneous position-dependent coupling fields-a two dimensional standing wave and an optical vortex beam. Upon derivation of the Maxwell wave equation, describing the dynamic response of the probe light in the atomic medium, we perform numerical calculations of the amplitude, phase modulations and Fraunhofer diffraction pattern of the probe field under different system parameters. We show that due to the azimuthal modulation of the Laguerre-Gaussian field, a two-dimensional asymmetric grating is observed, giving an increase of the zeroth and high orders of diffraction, thus transferring the probe energy to the high orders of direction. The asymmetry is especially seen in the case of combining a resonant probe with an off-resonant standing wave coupling and optical vortex fields. Unlike in previously reported asymmetric diffraction gratings for PT symmetric structures, the parity time symmetric structure is not necessary for the asymmetric diffraction grating presented here. The asymmetry is due to the constructive and destructive interference between the amplitude and phase modulations of the grating system, resulting in complete blocking of the diffracted photons at negative or positive angles, due to the coupling of the vortex beam. A detailed analysis of the probe field energy transfer to different orders of diffraction in the case of off-resonant standing wave coupling field proves the possibility of direct control over the performance of the grating.

5.
Opt Express ; 28(24): 36936-36952, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379777

RESUMO

We propose a robust localization of the highly-excited Rydberg atoms interacting with doughnut-shaped optical vortices. Compared with the earlier standing-wave (SW)-based localization methods, a vortex beam can provide an ultraprecise two-dimensional localization solely in the zero-intensity center, within a confined excitation region down to the nanometer scale. We show that the presence of the Rydberg-Rydberg interaction permits counter-intuitively much stronger confinement towards a high spatial resolution when it is partially compensated by a suitable detuning. In addition, applying an auxiliary SW modulation to the two-photon detuning allows a three-dimensional confinement of Rydberg atoms. In this case, the vortex field provides a transverse confinement, while the SW modulation of the two-photon detuning localizes the Rydberg atoms longitudinally. To develop a new subwavelength localization technique, our results pave a path one step closer to reducing excitation volumes to the level of a few nanometers, representing a feasible implementation for the future experimental applications.

6.
Opt Lett ; 45(19): 5440-5443, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001914

RESUMO

We investigate the possibility to attain strongly confined atomic localization using interacting Rydberg atoms in a coherent population trapping ladder configuration, where a standing-wave is used as a coupling field in the second leg of the ladder. Depending on the degree of compensation for the Rydberg level energy shift induced by the van der Waals interaction, by the coupling field detuning, we distinguish between two antiblockade regimes, i.e., a partial antiblockade (PA) and a full antiblockade. While a periodic pattern of tightly localized regions can be achieved for both regimes, the PA allows much faster convergence of spatial confinement, yielding a high-resolution Rydberg state-selective superlocalization regime for higher-lying Rydberg levels. In comparison, for lower-lying Rydberg levels, the PA leads to an anomalous change of spectra linewidth, confirming the importance of using a stable uppermost state to achieve a superlocalization regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...