Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bioenerg Biomembr ; 51(5): 329-340, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31342235

RESUMO

The mitochondrial structure and the contents of subunits (NDUFV2, SDHA, Cyt b, COX1) of mitochondrial respiratory complexes I-IV as well as of the hypoxia-inducible factor (HIF-1α) in the brain cortex (BC) of rats with high resistance (HR) and low resistance (LR) to hypoxia were studied for the first time depending on the severity of hypoxia. Different regimes of 30-min hypobaric hypoxia (pO2 14, 10, and 8%) were used. It was found that cortical mitochondria responded to 30-min hypobaric hypoxia of different severity with typical and progressing changes in mitochondrial structure and function of mitochondrial enzymes. Under 14 and 10% hypoxia, animals developed compensatory structural and metabolic responses aimed at supporting the cell energy homeostasis. Consequently, these hypoxia regimes can be used for treatment in pressure chambers. At the same time, decreasing the oxygen concentration in the inhaled air to 8% led to the appearance of destructive processes in brain mitochondria. The features of mitochondrial ultrastructure and the function of respiratory enzymes in the BC of HR and LR rats exposed to normoxic and hypoxic conditions suggest that the two types of animals had two essentially distinct functional and metabolic patterns determined by different efficiency of the energy apparatus. The development of adaptive and destructive responses involved different metabolic pathways of the oxidation of energy substrates and different efficiency of the functioning of mitochondrial respiratory carriers.


Assuntos
Adaptação Fisiológica , Córtex Cerebral/metabolismo , Hipóxia , Mitocôndrias/enzimologia , Animais , Respiração Celular , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Córtex Cerebral/ultraestrutura , Metabolismo Energético , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Oxigênio/metabolismo , Ratos
2.
Front Neurosci ; 9: 320, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483619

RESUMO

The article is focused on the role of the cell bioenergetic apparatus, mitochondria, involved in development of immediate and delayed molecular mechanisms for adaptation to hypoxic stress in brain cortex. Hypoxia induces reprogramming of respiratory chain function and switching from oxidation of NAD-related substrates (complex I) to succinate oxidation (complex II). Transient, reversible, compensatory activation of respiratory chain complex II is a major mechanism of immediate adaptation to hypoxia necessary for (1) succinate-related energy synthesis in the conditions of oxygen deficiency and formation of urgent resistance in the body; (2) succinate-related stabilization of HIF-1α and initiation of its transcriptional activity related with formation of long-term adaptation; (3) succinate-related activation of the succinate-specific receptor, GPR91. This mechanism participates in at least four critical regulatory functions: (1) sensor function related with changes in kinetic properties of complex I and complex II in response to a gradual decrease in ambient oxygen concentration; this function is designed for selection of the most efficient pathway for energy substrate oxidation in hypoxia; (2) compensatory function focused on formation of immediate adaptive responses to hypoxia and hypoxic resistance of the body; (3) transcriptional function focused on activated synthesis of HIF-1 and the genes providing long-term adaptation to low pO2; (4) receptor function, which reflects participation of mitochondria in the intercellular signaling system via the succinate-dependent receptor, GPR91. In all cases, the desired result is achieved by activation of the succinate-dependent oxidation pathway, which allows considering succinate as a signaling molecule. Patterns of mitochondria-controlled activation of GPR-91- and HIF-1-dependent reaction were considered, and a possibility of their participation in cellular-intercellular-systemic interactions in hypoxia and adaptation was proved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...