Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hydrometeorol ; 21(8): 1741-1759, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34054350

RESUMO

Many existing models that predict landslide hazards utilize ground-based sources of precipitation data. In locations where ground-based precipitation observations are limited (i.e., a vast majority of the globe), or for landslide hazard models that assess regional or global domains, satellite multisensor precipitation products offer a promising near-real-time alternative to ground-based data. NASA's global Landslide Hazard Assessment for Situational Awareness (LHASA) model uses the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) product to issue hazard "nowcasts" in near-real time for areas that are currently at risk for landsliding. Satellite-based precipitation estimates, however, can contain considerable systematic bias and random error, especially over mountainous terrain and during extreme rainfall events. This study combines a precipitation error modeling framework with a probabilistic adaptation of LHASA. Compared with the routine version of LHASA, this probabilistic version correctly predicts more of the observed landslides in the study region with fewer false alarms by high hazard nowcasts. This study demonstrates that improvements in landslide hazard prediction can be achieved regardless of whether the IMERG error model is trained using abundant ground-based precipitation observations or using far fewer and more scattered observations, suggesting that the approach is viable in data-limited regions. Results emphasize the importance of accounting for both random error and systematic satellite precipitation bias. The approach provides an example of how environmental prediction models can incorporate satellite precipitation uncertainty. Other applications such as flood and drought monitoring and forecasting could likely benefit from consideration of precipitation uncertainty.

2.
J Hydrometeorol ; 21(12): 2759-2776, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34163306

RESUMO

The Global Precipitation Measurement (GPM) constellation of spaceborne sensors provides a variety of direct and indirect measurements of precipitation processes. Such observations can be employed to derive spatially and temporally consistent gridded precipitation estimates either via data-driven retrieval algorithms or by assimilation into physically based numerical weather models. We compare the data-driven Integrated Multisatellite Retrievals for GPM (IMERG) and the assimilation-enabled NASA-Unified Weather Research and Forecasting (NU-WRF) model against Stage IV reference precipitation for four major extreme rainfall events in the southeastern United States using an object-based analysis framework that decomposes gridded precipitation fields into storm objects. As an alternative to conventional "grid-by-grid analysis," the object-based approach provides a promising way to diagnose spatial properties of storms, trace them through space and time, and connect their accuracy to storm types and input data sources. The evolution of two tropical cyclones are generally captured by IMERG and NU-WRF, while the less organized spatial patterns of two mesoscale convective systems pose challenges for both. NU-WRF rain rates are generally more accurate, while IMERG better captures storm location and shape. Both show higher skill in detecting large, intense storms compared to smaller, weaker storms. IMERG's accuracy depends on the input microwave and infrared data sources; NU-WRF does not appear to exhibit this dependence. Findings highlight that an object-oriented view can provide deeper insights into satellite precipitation performance and that the satellite precipitation community should further explore the potential for "hybrid" data-driven and physics-driven estimates in order to make optimal usage of satellite observations.

3.
PLoS One ; 14(7): e0218657, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31269035

RESUMO

Robust inventories are vital for improving assessment of and response to deadly and costly landslide hazards. However, collecting landslide events in inventories is difficult at the global scale due to inconsistencies in or the absence of landslide reporting. Citizen science is a valuable opportunity for addressing some of these challenges. The new Cooperative Open Online Landslide Repository (COOLR) supplements data in a NASA-developed Global Landslide Catalog (GLC) with citizen science reports to build a more robust, publicly available global inventory. This manuscript introduces the COOLR project and its methods, evaluates the initial citizen science results from the first 13 months, and discusses future improvements to increase the global engagement with the project. The COOLR project (https://landslides.nasa.gov) contains Landslide Reporter, the first global citizen science project for landslides, and Landslide Viewer, a portal to visualize data from COOLR and other satellite and model products. From March 2018 to April 2019, 49 citizen scientists contributed 162 new landslide events to COOLR. These events spanned 37 countries in five continents. The initial results demonstrated that both expert and novice participants are contributing via Landslide Reporter. Citizen scientists are filling in data gaps through news sources in 11 different languages, in-person observations, and new landslide events occurring hundreds and thousands of kilometers away from any existing GLC data. The data is of sufficient accuracy to use in NASA susceptibility and hazard models. COOLR continues to expand as an open platform of landslide inventories with new data from citizen scientists, NASA scientists, and other landslide groups. Future work on the COOLR project will seek to increase participation and functionality of the platform as well as move towards collective post-disaster mapping.


Assuntos
Ciência do Cidadão , Desastres , Deslizamentos de Terra/prevenção & controle , Modelos de Riscos Proporcionais , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Humanos , Deslizamentos de Terra/estatística & dados numéricos , Medição de Risco , Estados Unidos , United States National Aeronautics and Space Administration
4.
Bull Am Meteorol Soc ; 98(1): 69-78, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30008481

RESUMO

The measurement of global precipitation, both rainfall and snowfall, is critical to a wide range of users and applications. Rain gauges are indispensable in the measurement of precipitation, remaining the de facto standard for precipitation information across the Earth's surface for hydro-meteorological purposes. However, their distribution across the globe is limited: over land their distribution and density is variable, while over oceans very few gauges exist and where measurements are made, they may not adequately reflect the rainfall amounts of the broader area. Critically, the number of gauges available, or appropriate for a particular study, varies greatly across the Earth due to temporal sampling resolutions, periods of operation, data latency and data access. Numbers of gauges range from a few thousand available in near real time, to about a hundred thousand for all 'official' gauges, and to possibly hundreds of thousands if all possible gauges are included. Gauges routinely used in the generation of global precipitation products cover an equivalent area of between about 250 m2 and 3,000 m2. For comparison, the center circle of a soccer pitch or tennis court is about 260 m2. Although each gauge should represent more than just the gauge orifice, auto-correlation distances of precipitation vary greatly with regime and the integration period. Assuming each Global Precipitation Climatology Centre (GPCC) -available gauge is independent and represents a surrounding area of 5 km radius, this represents only about 1% of the Earth's surface. The situation is further confounded for snowfall which has a greater measurement uncertainty.

6.
J Hydrometeorol ; Volume 18(No 10): 2801-2815, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-32021578

RESUMO

Satellite multisensor precipitation products (SMPPs) have a variety of potential uses, but suffer from relatively poor accuracy due to systematic biases and random errors in precipitation occurrence and magnitude. We use the Censored Shifted Gamma Distribution (CSGD) to characterize the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TMPA), a commonly-used SMPP, and to compare it against the rain gage-based North American Land Data Assimilation System Phase 2 (NLDAS-2) reference precipitation dataset across the conterminous United States. The CSGD describes both the occurrence and the magnitude of precipitation. Climatological CSGD characterization reveals significant regional differences between TMPA and NLDAS-2 in terms of magnitude and probability of occurrence. We also use a flexible CSGD-based error modeling framework to quantify errors in TMPA relative to NLDAS-2. The framework can model conditional bias as either a linear or nonlinear function of satellite precipitation rate and can produce a "conditional CSGD" of describing the distribution of "true" precipitation based on a satellite observation. The framework is also used to "merge" TMPA with atmospheric variables from Modern-Era Retrospective analysis for Research and Applications (MERRA-2) to reduce SMPP errors. Despite the coarse resolution of MERRA-2, this merging offers robust reductions in random error due to the better performance of numerical models in resolving stratiform precipitation. Improvements in the near-realtime version of TMPA are relatively greater than for the higher-latency research version.

7.
Nat Hazards (Dordr) ; 87(1): 145-164, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-33867675

RESUMO

Landslides can have significant and pervasive impacts to life and property around the world. Several attempts have been made to predict the geographic distribution of landslide activity at continental and global scales. These efforts shared common traits such as resolution, modeling approach, and explanatory variables. The lessons learned from prior research have been applied to build a new global susceptibility map from existing and previously unavailable data. Data on slope, faults, geology, forest loss, and road networks were combined using a heuristic fuzzy approach. The map was evaluated with a Global Landslide Catalog developed at the National Aeronautics and Space Administration, as well as several local landslide inventories. Comparisons to similar susceptibility maps suggest that the subjective methods commonly used at this scale are, for the most part, reproducible. However, comparisons of landslide susceptibility across spatial scales must take into account the susceptibility of the local subset relative to the larger study area. The new global landslide susceptibility map is intended for use in disaster planning, situational awareness, and for incorporation into global decision support systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...