Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(10): 8158-8176, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38380443

RESUMO

Aqueous nanodiamonds illuminated by UV light produce free solvated electrons, which may drive high-energy reduction reactions in water. However, the influence of water conformations on the excited-state electron-transfer mechanism are still under debate. In this work, we offer a theoretical study of charge-transfer states in adamantane-water structures obtained by linear-response time-dependent density-functional theory. Small water clusters with broken hydrogen bonds are found to efficiently bind the electron from adamantane. A distinction is made with respect to the nature of the water clusters: some bind the electron in a water cavity, others along a strong permanent total dipole. These two types of bound states are more strongly binding, the higher their electron affinity and their positive electrostatic potential, the latter being dominated by the energy of the lowest unoccupied molecular orbital of the isolated water clusters. Structural sampling in a thermal equilibrium at room temperature via molecular dynamics snapshots confirms under which conditions the underlying waters clusters can occur and verifies that broken hydrogen bonds in the water network close to adamantane can create traps for the solvated electron.

2.
J Comput Chem ; 45(11): 710-718, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38109424

RESUMO

Nanodiamonds (NDs) are unique carbonaceous materials with exceptionally high stability, hardness, and notable electronic properties. Their applications in photocatalysis, biomedicine, and energy materials are usually carried out in aqueous environments, where they interact with aqueous adsorbates. Especially, electron density may rearrange from the diamond material toward oxidative adsorbates such as oxygen, which is known as charge transfer doping. In this article, we quantify the charge transfer doping for NDs with inhomogeneous surface coverings (hydroxyl, fluorine, and amorphous carbon), as well as NDs doped with heteroatoms (B, Si, N) using hybrid density functional theory (DFT) calculations. The transfer doping magnitude is largely determined by the NDs' highest occupied molecular orbital energies, which can in turn be modified by the surface covering and doping. However, local modifications of the ND structures do not have any local effects on the magnitude of the charge transfer. We furthermore analyze the impact of aqueous adsorbates on the excited states of an aqueous ND in the context of photocatalysis via time-dependent DFT. Here, we find that the excited electrons are biased to move in the direction of the respective oxidative adsorbate. Surprisingly, we find that also unreactive species such as nitrous oxide may attract the excited electrons, which is probably due to the positive partial charge that is induced by the local N 2 O solvation geometry.

3.
J Chem Theory Comput ; 19(14): 4461-4473, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37053438

RESUMO

Nanodiamonds have a wide range of applications including catalysis, sensing, tribology, and biomedicine. To leverage nanodiamond design via machine learning, we introduce the new data set ND5k, consisting of 5089 diamondoid and nanodiamond structures and their frontier orbital energies. ND5k structures are optimized via tight-binding density functional theory (DFTB) and their frontier orbital energies are computed using density functional theory (DFT) with the PBE0 hybrid functional. From this data set we derive a qualitative design suggestion for nanodiamonds in photocatalysis. We also compare recent machine learning models for predicting frontier orbital energies for similar structures as they have been trained on (interpolation on ND5k), and we test their abilities to extrapolate predictions to larger structures. For both the interpolation and extrapolation task, we find the best performance using the equivariant message passing neural network PaiNN. The second best results are achieved with a message passing neural network using a tailored set of atomic descriptors proposed here.

4.
Nanoscale ; 14(46): 17188-17195, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394505

RESUMO

Solvated electrons are among the most reductive species in an aqueous environment. Diamond materials have been proposed as a promising source of solvated electrons, but the underlying emission process in water remains elusive so far. Here, we show spectroscopic evidence for the emission of solvated electrons from detonation nanodiamonds upon excitation with both deep ultraviolet (225 nm) and visible (400 nm) light using ultrafast transient absorption. The crucial role of surface termination in the emission process is evidenced by comparing hydrogenated, hydroxylated and carboxylated nanodiamonds. In particular, a transient response that we attribute to solvated electrons is observed on hydrogenated nanodiamonds upon visible light excitation, while it shows a sub-ps recombination due to trap states when excited with deep ultraviolet light. The essential role of surface reconstructions on the nanodiamonds in these processes is proposed based on density functional theory calculations. These results open new perspectives for solar-driven emission of solvated electrons in an aqueous phase using nanodiamonds.

5.
J Comput Chem ; 43(13): 923-929, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35322429

RESUMO

Nanodiamonds (NDs) are modern high-potential materials relevant for applications in biomedicine, photocatalysis, and various other fields. Their electronic surface properties, especially in the liquid phase, are key to their function in the applications, but we show that they are sensitively modified by their interactions with the environment. Two important interaction modes are those with oxidative aqueous adsorbates as well as ND self-aggregation towards the formation of ND clusters. For planar diamond surfaces it is known that the electron density migrates from the diamond towards oxidative adsorbates, which is known as transfer doping. Here, we quantify this effect for highly curved NDs of varying sizes (35-147 C atoms) and surface terminations (H, OH, F), focusing on their interactions with the most abundant aqueous oxidative adsorbates (H3 O+ , O2 , O3 ). We prove that the concept of transfer doping stays valid for the case of the high-curvature NDs and can be tuned via the ND's specific properties. Secondly, we investigate the electronic structures of clusters of NDs which are known to form in particular in aqueous dispersions. Upon cluster formation, we find that the optical gaps of the structures are significantly reduced, which explains why different experimental values were obtained for the optical gap of the same structures, and the cluster's LUMO shapes resemble atom-type orbitals, as in the case of isolated spherical NDs. Our findings have implications for ND applications as photocatalysts or electronic devices, where the specific electronic properties are key to the functionality of the ND material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...