Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 56(18): 2391-2402, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37566703

RESUMO

ConspectusSince the discovery of synthetic zeolites in the 1940s and their implementation in major industrial processes involving adsorption, catalytic conversion, and ion exchange, material scientists have targeted the rational design of zeolites: controlling synthesis to crystallize zeolites with predetermined properties. Decades later, the fundamentals of zeolite synthesis remain largely obscured in a black box, rendering rational design elusive. A major prerequisite to rational zeolite design is to fully understand, and control, the elementary processes governing zeolite nucleation, growth, and stability. The molecular-level investigation of these processes has been severely hindered by the complex multiphasic media in which aluminosilicate zeolites are typically synthesized. This Account documents our recent progress in crystallizing zeolites from synthesis media based on hydrated silicate ionic liquids (HSIL), a synthesis approach facilitating the evaluation of the individual impacts of synthesis parameters such as cation type, water content, and alkalinity on zeolite nucleation, growth, and phase selection. HSIL-based synthesis allows straightforward elucidation of the relationship between the characteristics of the synthesis medium and the properties and structure of the crystalline product. This assists in deriving new insights in zeolite crystallization in an inorganic aluminosilicate system, thus improving the conceptual understanding of nucleation and growth in the context of inorganic zeolite synthesis in general. This Account describes in detail what hydrated silicate ionic liquids are, how they form, and how they assist in improving our understanding of zeolite genesis on a molecular level. It describes the development of ternary phase diagrams for inorganic aluminosilicate zeolites via a systematic screening of synthesis compositions. By evaluating obtained crystal structure properties such as framework composition, topology, and extraframework cation distributions, critical questions are dealt with: Which synthesis variables govern the aluminum content of crystallizing zeolites? How does the aluminum content in the framework determine the expression of different topologies? The crucial role of the alkali cation, taking center stage in all aspects of crystallization, phase selection, and, by extension, transformation is also discussed. New criteria and models for phase selection are proposed, assisting in overcoming the need for excessive trial and error in the development of future synthesis protocols.Recent progress in the development of a toolbox enabling liquid-state characterization of these precursor media has been outlined, setting the stage for the routine monitoring of zeolite crystallization in real time. Current endeavors on and future needs for the in situ investigation of zeolite crystallization are highlighted. Finally, experimentally accessible parameters providing opportunities for modeling zeolite nucleation and growth are identified. Overall, this work provides a perspective toward future developments, identifying research areas ripe for investigation and discovery.

2.
Cryst Growth Des ; 23(5): 3338-3348, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37159660

RESUMO

Recently identified zeolite precursors consisting of concentrated, hyposolvated homogeneous alkalisilicate liquids, hydrated silicate ionic liquids (HSIL), minimize correlation of synthesis variables and enable one to isolate and examine the impact of complex parameters such as water content on zeolite crystallization. HSIL are highly concentrated, homogeneous liquids containing water as a reactant rather than bulk solvent. This simplifies elucidation of the role of water during zeolite synthesis. Hydrothermal treatment at 170 °C of Al-doped potassium HSIL with chemical composition 0.5SiO2:1KOH:xH2O:0.013Al2O3 yields porous merlinoite (MER) zeolite when H2O/KOH exceeds 4 and dense, anhydrous megakalsilite when H2O/KOH is lower. Solid phase products and precursor liquids were fully characterized using XRD, SEM, NMR, TGA, and ICP analysis. Phase selectivity is discussed in terms of cation hydration as the mechanism, allowing a spatial cation arrangement enabling the formation of pores. Under water deficient conditions, the entropic penalty of cation hydration in the solid is large and cations need to be entirely coordinated by framework oxygens, leading to dense, anhydrous networks. Hence, the water activity in the synthesis medium and the affinity of a cation to either coordinate to water or to aluminosilicate decides whether a porous, hydrated, or a dense, anhydrous framework is formed.

3.
Langmuir ; 39(22): 7804-7810, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37227151

RESUMO

When solute molecules in a liquid evaporate at the surface, concentration gradients can lead to surface tension gradients and provoke fluid convection at the interface, a phenomenon commonly known as the Marangoni effect. Here, we demonstrate that minute quantities of ethanol in concentrated sodium hydroxide solution can induce pronounced and long-lasting Marangoni flow upon evaporation at room temperature. By employing particle image velocimetry and gravimetric analysis, we show that the mean interfacial speed of the evaporating solution sensitively increases with the evaporation rate for ethanol concentrations lower than 0.5 mol %. Placing impermeable objects near the liquid-gas interface enforces steady concentration gradients, thereby promoting the formation of stationary flows. This allows for contact-free control of the flow pattern as well as its modification by altering the objects shape. Analysis of bulk flows reveals that the energy of evaporation in the case of stationary flows is converted to kinetic fluid energy with high efficiency, but reducing the sodium hydroxide concentration drastically suppresses the observed effect to the point where flows become entirely absent. Investigating the properties of concentrated sodium hydroxide solution suggests that ethanol dissolution in the bulk is strongly limited. At the surface, however, the co-solvent is efficiently stored, enabling rapid adsorption or desorption of the alcohol depending on its concentration in the adjacent gas phase. This facilitates the generation of large surface tension gradients and, in combination with the perpetual replenishment of the surface ethanol concentration by bulk convection, to the generation of long-lasting, self-sustaining flows.

4.
J Am Chem Soc ; 144(39): 18054-18061, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36136766

RESUMO

Water plays a central role in the crystallization of a variety of organic, inorganic, biological, and hybrid materials. This is also true for zeolites and zeolite-like materials, an important class of industrial catalysts and adsorbents. Water is always present during their hydrothermal synthesis, either with or without organic species as structure-directing agents. Apart from its role as a solvent or a catalyst, structure direction by water in zeolite synthesis has never been clearly elucidated. Here, we report the crystallization of phosphate-based molecular sieves using rationally designed, hydrogen-bonded water-aminium assemblies, resulting in molecular sieves exhibiting the crystallographic ordering of heteroatoms. We demonstrate that a 1:1 assembly of water and diprotonated N,N-dimethyl-1,2-ethanediamine acts as a structure-directing agent in the synthesis of a silicoaluminophosphate material with phillipsite (PHI) topology, using SMARTER crystallography, which combines single-crystal X-ray diffraction and nuclear magnetic resonance spectroscopy, as well as ab initio molecular dynamics simulations. The molecular arrangement of the hydrogen-bonded assembly matches well with the shape and size of subunits in the PHI structure, and their charge distributions result in the strict ordering of framework tetrahedral atoms. This concept of structure direction by water-containing supramolecular assemblies should be applicable to the synthesis of many classes of porous materials.


Assuntos
Zeolitas , Hidrogênio , Fosfatos/química , Solventes , Água , Zeolitas/química
5.
Chem Mater ; 34(16): 7159-7166, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36032550

RESUMO

A reproducible synthesis strategy for ultracrystalline K,Na-aluminosilicate JBW zeolite is reported. The synthesis uses a Na-based hydrated silicate ionic liquid (HSIL) as a silicon source and gibbsite as the aluminum source. 27Al and 23Na NMR spectra exhibit crystalline second-order quadrupole patterns in the hydrated as well as dehydrated states and distinct resonances for different T-sites demonstrating an exceptional degree of order of the elements of the JBW framework, observed for the first time in a zeolite. Detailed structural analysis via NMR crystallography, combining powder X-ray diffraction and solid-state NMR of all elements (27Al, 29Si, 23Na, 39K, and 1H), reveals remarkable de- and rehydration behavior of the JBW framework, transforming from its as-made hydrated structure via a modified anhydrous state into a different rehydrated symmetry while showing astonishing flexibility for a semicondensed aluminosilicate. Its crystallinity, exceptional degree of ordering of the T atoms and sodium cations, and the fully documented structure qualify this defect-free K,Na-aluminosilicate JBW zeolite as a suitable model system for developing NMR modeling methods.

6.
Chem Mater ; 34(16): 7150-7158, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36032556

RESUMO

Using hydrated silicate ionic liquids, phase selection and framework silicon-to-aluminum ratio during inorganic zeolite synthesis were studied as a function of batch composition. Consisting of homogeneous single phasic liquids, this synthesis concept allows careful control of crystallization parameters and evaluation of yield and sample homogeneity. Ternary phase diagrams were constructed for syntheses at 90 °C for 1 week. The results reveal a cation-dependent continuous relation between batch stoichiometry and framework aluminum content, valid across the phase boundaries of all different zeolites formed in the system. The framework aluminum content directly correlates to the type of alkali cation and gradually changes with batch alkalinity and dilution. This suggests that the observed zeolites form through a solution-mediated mechanism involving the concerted assembly of soluble cation-oligomer ion pairs. Phase selection is a consequence of the stability for a particular framework at the given aluminum content and alkali type.

7.
Chem Mater ; 34(16): 7139-7149, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36032557

RESUMO

Current nucleation models propose manifold options for the formation of crystalline materials. Exploring and distinguishing between different crystallization pathways on the molecular level however remain a challenge, especially for complex porous materials. These usually consist of large unit cells with an ordered framework and pore components and often nucleate in complex, multiphasic synthesis media, restricting in-depth characterization. This work shows how aluminosilicate speciation during crystallization can be documented in detail in monophasic hydrated silicate ionic liquids (HSILs). The observations reveal that zeolites can form via supramolecular organization of ion-paired prenucleation clusters, consisting of aluminosilicate anions, ion-paired to alkali cations, and imply that zeolite crystallization from HSILs can be described within the spectrum of modern nucleation theory.

8.
Chemistry ; 28(68): e202202621, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36005885

RESUMO

An important aspect within zeolite synthesis is to make fully tunable framework materials with controlled aluminium distribution. A major challenge in characterising these zeolites at operating conditions is the presence of water. In this work, we investigate the effect of hydration on the 27 Al NMR parameters of the ultracrystalline K,Na-compensated aluminosilicate JBW zeolite using experimental and computational techniques. The JBW framework, with Si/Al ratio of 1, is an ideal benchmark system as a stepping stone towards more complicated zeolites. The presence and mobility of water and extraframework species directly affect NMR fingerprints. Excellent agreement between theoretical and experimental spectra is obtained provided dynamic methods are employed with hydrated structural models. This work shows how NMR is instrumental in characterising aluminium distributions in zeolites at operating conditions.

11.
Chem Mater ; 34(24): 11081-11092, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36590702

RESUMO

A guideline for zeolite phase selection in inorganic synthesis media is proposed, based on a systematic exploration of synthesis from inorganic media using liquid Na+, K+, and Cs+ aluminosilicate. Although the Si/Al ratio of the zeolites is a continuous function of the synthesis conditions, boundaries between topologies are sharp. The here-derived phase selection criterion relates the obtained zeolite topology to the Si/Al ratio imposed by the synthesis medium. For a given Si/Al ratio, the framework with the highest occupation of topologically available cation sites is favored. The large number of published zeolite syntheses supporting the observation provides strong indication that the concept is applicable in a larger context. The proposed criterion explains how minor variations in the composition of inorganic synthesis media induce the commonly occurring, abrupt changes in topology. It highlights underlying reasons causing the strict demarcation of stability fields of the as-synthesized zeolites experimentally observed in inorganic synthesis.

12.
Mater Horiz ; 8(9): 2576-2583, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34870303

RESUMO

In inorganic zeolite formation, a direct correspondence between liquid state species in the synthesis and the supramolecular decoration of the pores in the as-made final zeolite has never been reported. In this paper, a direct link between the sodium speciation in the synthesis mixture and the pore structure and content of the final zeolite is demonstrated in the example of hydroxysodalite. Super-ions with 4 sodium cations bound by mono- and bihydrated hydroxide are identified as structure-directing agents for the formation of this zeolite. This documentation of inorganic solution species acting as a templating agent in zeolite formation opens new horizons for zeolite synthesis by design.

13.
Chemistry ; 27(64): 15944-15953, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34624150

RESUMO

Layered double hydroxides (LDHs) serve a score of applications in catalysis, drug delivery, and environmental remediation. Smarter crystallography, combining X-ray diffraction and NMR spectroscopy revealed how interplay between carbonate and pH determines the LDH structure and Al ordering in ZnAl LDH. Carbonate intercalated ZnAl LDHs were synthesized at different pH (pH 8.5, pH 10.0, pH 12.5) with a Zn/Al ratio of 2, without subsequent hydrothermal treatment to avoid extensive recrystallisation. In ideal configuration, all Al cations should be part of the LDH and be coordinated with 6 Zn atoms, but NMR revealed two different Al local environments were present in all samples in a ratio dependent on synthesis pH. NMR-crystallography, integrating NMR spectroscopy and X-ray diffraction, succeeded to identify them as Al residing in the highly ordered crystalline phase, next to Al in disordered material. With increasing synthesis pH, crystallinity increased, and the side phase fraction decreased. Using 1 H-13 C, 13 C-27 Al HETCOR NMR in combination with 27 Al MQMAS, 27 Al-DQ-SQ measurements and Rietveld refinement on high-resolution PXRD data, the extreme anion exchange selectivity of these LDHs for CO3 2- over HCO3 - was linked to strict Al and CO3 2- ordering in the crystalline LDH. Even upon equilibration of the LDH in pure NaHCO3 solutions, only CO3 2- was adsorbed by the LDH. This reveals the structure directing role of bivalent cations such as CO3 2- during crystallization of [M2+ 4 M3+ 2 (OH)2 ]2+ [A2- ]1 ⋅yH2 O LDH phases.

14.
J Am Chem Soc ; 143(13): 4962-4968, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33593065

RESUMO

Molecular separation of carbon dioxide (CO2) and methane (CH4) is of growing interest for biogas upgrading, carbon capture and utilization, methane synthesis and for purification of natural gas. Here, we report a new zeolitic-imidazolate framework (ZIF), coined COK-17, with exceptionally high affinity for the adsorption of CO2 by London dispersion forces, mediated by chlorine substituents of the imidazolate linkers. COK-17 is a new type of flexible zeolitic-imidazolate framework Zn(4,5-dichloroimidazolate)2 with the SOD framework topology. Below 200 K it displays a metastable closed-pore phase next to its stable open-pore phase. At temperatures above 200 K, COK-17 always adopts its open-pore structure, providing unique adsorption sites for selective CO2 adsorption and packing through van der Waals interactions with the chlorine groups, lining the walls of the micropores. Localization of the adsorbed CO2 molecules by Rietveld refinement of X-ray diffraction data and periodic density functional theory calculations revealed the presence and nature of different adsorption sites. In agreement with experimental data, grand canonical Monte Carlo simulations of adsorption isotherms of CO2 and CH4 in COK-17 confirmed the role of the chlorine functions of the linkers and demonstrated the superiority of COK-17 compared to other adsorbents such as ZIF-8 and ZIF-71.

15.
ACS Sens ; 5(11): 3392-3397, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33107724

RESUMO

A measurement cell for the use of accurate conductivity measurements of corrosive ionic media is presented. Based on the concept of moving electrode electrochemical impedance spectroscopy, exceptional measurement accuracy is achieved in a large conductivity range. Extensive testing with corrosive ionic media demonstrated the robust operation of the cell under harsh chemical conditions, up to temperatures of 130 °C. The novel design allows monitoring small conductivity changes during chemical reactions in ionic media, for instance, zeolite formation from hydrated ionic liquids.


Assuntos
Cáusticos , Espectroscopia Dielétrica , Condutividade Elétrica , Eletrodos , Íons
16.
RSC Adv ; 10(35): 20928-20938, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35517752

RESUMO

In this study the structure directing effect of a gemini-type piperidine-based multi-ammonium surfactant during hydrothermal zeolite synthesis was investigated for two cases: with and without a source of aluminum. The absence of an aluminum source led to the formation of an amorphous mesoporous MCM-48 type silica material, while the presence of aluminum guaranteed the formation of zeolite beta with a hierarchical pore system. The two opposing cases were studied in a time and temperature-dependent manner. The mobility and through space interaction of these large surfactant molecules were studied by liquid state nuclear magnetic resonance (NMR) at a temperature relevant to hydrothermal synthesis (363 K) in pure water and upon addition of an aluminum and silicon source. In the gel state, at different stages of aging and hydrothermal synthesis, low angle X-ray diffraction (XRD) and solid state magic angle spinning nuclear magnetic resonance (1H MAS NMR) spectrometry determined the developing order within the system. At each of these different synthesis steps the respective intermediate materials were calcined. Transmission electron microscopy then allowed closer inspection of the locally developing mesoscopic order, while N2 physisorption was used to follow the evolution of porosity.

17.
Chemistry ; 25(56): 12957-12965, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31339220

RESUMO

Polyoligosiloxysilicone (POSiSil; designated PSS-2) is a copolymer of double four-ring (D4R) cyclosilicate and dimethylsiloxane. It is synthesized by linking D4R units in tetrabutylammonium cyclosilicate crystals with dimethyldichlorosilane. The structure of PSS-2 was revealed using solid state NMR spectroscopy. In this 3D copolymer D4R units are connected systematically by short siloxane chains most likely composed of 2 to 3 dimethylsiloxane monomers. Controlling the conversion of the parent material allows for tuning the porosity of PSS-2. Residual parent material is embedded inside PSS-2 polymer and can be eliminated by calcination. This leaves nanovoids inside PSS-2, which is moderately hydrophobic. Pressure-driven intrusion-extrusion cycles of aqueous solution exhibit hysteresis, thus, PSS-2 can be used as reversible confinement for liquids with a capacity of around 1000 mm3 g-1 in porosity.

18.
Chem Soc Rev ; 48(1): 134-156, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444247

RESUMO

Synthetic transition aluminas (χ, κ, θ, γ, δ, η, ρ) exhibit unique adsorptive and catalytic properties leading to numerous practical applications. Generated by thermal transformation of aluminium (oxy)hydroxides, structural differences between them arise from the variability of aluminium coordination numbers and degree of dehydroxylation. Unequivocal identification of these phases using X-ray diffraction has proven to be very difficult. Quadrupolar interactions of 27Al nuclei, highly sensitive to each site symmetry, render advanced 27Al solid-state NMR a unique spectroscopic tool to fingerprint and identify the different phases. In this paper, 27Al NMR spectroscopic data on alumina reported in literature are collected in a comprehensive library. Based on this dataset, a new 3D correlative method of NMR parameters is presented, enabling fingerprinting and identification of such phases. Providing a gold standard from crystalline samples, this approach demonstrates that any sort of crystalline, ill crystallized or amorphous, mixed periodic or aperiodically ordered transition alumina can now be assessed beyond the current limitations of characterisation. Adopting the presented approach as a standard characterisation of alumina samples will readily reveal NMR parameter-structure-property relations suitable to develop new or improved applications of alumina. Methodological guidance is provided to assist consistent implementation of this characterisation throughout the fields involved.

19.
Chem Commun (Camb) ; 54(44): 5626-5629, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29770814

RESUMO

EU-7 zeolite with Si/Al ratio of 15 is identified as a BIK type zeolite. The framework charge is compensated with Cs+ cations located in 8-ring channels at regular distances. Even partially exchanged, Cu-loaded EU-7 is active in NH3-SCR and withstands hydrothermal aging at 900 °C needed for application in diesel particulate filters.

20.
Chemistry ; 23(47): 11286-11293, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28590596

RESUMO

A new copolymer consisting of double four ring (D4R) silicate units linked by dimethylsilicone monomer referred to as polyoligosiloxysilicone number one (PSS-1) was synthesized. The D4R building unit is provided by hexamethyleneimine cyclosilicate hydrate crystals, which were dehydrated and reacted with dichlorodimethylsilane. The local structure of D4R silicate units and dimethyl silicone monomers was revealed by multidimensional solid-state NMR, FTIR and modeling. On average, D4R silicate units have 6.8 silicone linkages. Evidence for preferential unidirectional growth and chain ordering within the PSS-1 copolymer was provided by STEM and TEM. The structure of PSS-1 copolymer consists of twisted columns of D4R silicate units with or without cross-linking. Both models are consistent with the spectroscopic, microscopic and physical properties. PSS-1 chains are predicted to be mechanically strong compared to silicones such as PDMS, yet more flexible than rigid silica materials such as zeolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...