Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(40)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38955334

RESUMO

In the wafer-scale growth of Ir(001) on yttria-stabilized zirconia (YSZ) by magnetron sputtering epitaxy two kinds of {111} oriented domains are observed. One consists of sharp 'fjord'-shaped features in which four 90° alternated rotational variants of {111} are possible and the second one consists of islands with less defined shapes in which eight 45° alternated rotational variants can be found. Their formation occurs directly at the Ir/YSZ interface along incoherent grain boundaries, likely nucleating at local defects of the YSZ surface. In order to avoid these misoriented domains, process separation and proper etching pretreatment of the wafers both before and between the sputtering processes have been found to be the key strategy for achieving reproducibility and overall better material quality.

2.
Polymers (Basel) ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543407

RESUMO

With ultrasonic fatigue testing (UFT), it is possible to investigate the damage initiation and accumulation from the weakest link of the composite material in the very high cycle fatigue (VHCF) regime in a shorter time frame than conventional fatigue testing. However, the thermal influence on the mechanical fatigue of composites and the scatter in fatigue data for composites under ultrasonic cyclic three-point bending loading still need to be investigated. In this study, we conducted interrupted constant-amplitude fatigue experiments on a carbon-fiber satin-fabric reinforced in poly-ether-ketone-ketone (CF-PEKK) composite material. These experiments were carried out using a UFT system, which operates at a cyclic frequency of 20 kHz with a pulse-pause sequence. Various parameters, such as the CF-PEKK specimen's surface temperature, acoustic activity, and the ultrasonic generator's input resonance parameters, were measured during cyclic loading. During experiment interruption, stiffness measurement and volumetric damage characterization in the CF-PEKK specimens using 3D X-ray microscopy (XRM) were performed. The locations of damage initiation and accumulation and their influence on the changes in in situ parameters were characterized. Under fixed loading conditions, damage accumulation occurred at different locations, leading to scattering in fatigue life data. Further, the damage population decreased from the surface to the bulk of the composite material.

3.
Materials (Basel) ; 16(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176244

RESUMO

A detailed analysis of morphology of gallium nitride crystal growth obtained by ammonothermal and halide vapor phase epitaxy methods was carried out. The work was conducted to determine the source of triangular planar defects visible in X-ray topography as areas with locally different lattice parameters. It is shown that the occurrence of these defects is related to growth hillocks. Particular attention was paid to analyzing the manner and consequences of merging hillocks. In the course of the study, the nature of the mentioned defects and the cause of their formation were determined. It was established that the appearance of the defects depends on the angle formed between the steps located on the sides of two adjacent hillocks. A universal growth model is presented to explain the cause of heterogeneity during the merging of growth hillocks.

4.
Materials (Basel) ; 15(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36234338

RESUMO

In this paper, we investigate, using X-ray Bragg diffraction imaging and defect selective etching, a new type of extended defect that occurs in ammonothermally grown gallium nitride (GaN) single crystals. This hexagonal "honeycomb" shaped defect is composed of bundles of parallel threading edge dislocations located in the corners of the hexagon. The observed size of the honeycomb ranges from 0.05 mm to 2 mm and is clearly correlated with the number of dislocations located in each of the hexagon's corners: typically ~5 to 200, respectively. These dislocations are either grouped in areas that exhibit "diameters" of 100-250 µm, or they show up as straight long chain alignments of the same size that behave like limited subgrain boundaries. The lattice distortions associated with these hexagonally arranged dislocation bundles are extensively measured on one of these honeycombs using rocking curve imaging, and the ensemble of the results is discussed with the aim of providing clues about the origin of these "honeycombs".

5.
Micromachines (Basel) ; 13(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36014204

RESUMO

Ferroelectric thin films of wurtzite-type aluminum scandium nitride (Al1−xScxN) are promising candidates for non-volatile memory applications and high-temperature sensors due to their outstanding functional and thermal stability exceeding most other ferroelectric thin film materials. In this work, the thermal expansion along with the temperature stability and its interrelated effects have been investigated for Al1−xScxN thin films on sapphire Al2O3(0001) with Sc concentrations x (x = 0, 0.09, 0.23, 0.32, 0.40) using in situ X-ray diffraction analyses up to 1100 °C. The selected Al1−xScxN thin films were grown with epitaxial and fiber textured microstructures of high crystal quality, dependent on the choice of growth template, e.g., epitaxial on Al2O3(0001) and fiber texture on Mo(110)/AlN(0001)/Si(100). The presented studies expose an anomalous regime of thermal expansion at high temperatures >~600 °C, which is described as an isotropic expansion of a and c lattice parameters during annealing. The collected high-temperature data suggest differentiation of the observed thermal expansion behavior into defect-coupled intrinsic and oxygen-impurity-coupled extrinsic contributions. In our hypothesis, intrinsic effects are denoted to the thermal activation, migration and curing of defect structures in the material, whereas extrinsic effects describe the interaction of available oxygen species with these activated defect structures. Their interaction is the dominant process at high temperatures >800 °C resulting in the stabilization of larger modifications of the unit cell parameters than under exclusion of oxygen. The described phenomena are relevant for manufacturing and operation of new Al1−xScxN-based devices, e.g., in the fields of high-temperature resistant memory or power electronic applications.

6.
Materials (Basel) ; 15(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806745

RESUMO

In this paper, a detailed investigation of the basic ammonothermal growth process of GaN is presented. By analyzing the crystallization on a native seed with a lenticular shape, thus with an intentionally varying off-cut, we wanted to answer some basic questions: (i) Which crystallographic planes play the most important role during growth (which planes are formed and which disappear)? (ii) What is the relationship between the growth rates in different crystallographic directions? (iii) What is the influence of the off-cut of the seed on the growth process? Two non-polar slices, namely, 12¯10 and 1¯100, as well as a 0001 basal plane slice of an ammonothermal crystal were analyzed. The examined planes were selectively etched in order to reveal the characteristic features of the growth process. The applied characterization methods included: optical microscopy with Nomarski contrast and ultraviolet illumination, X-ray topography and high-resolution X-ray diffraction, and secondary ion mass spectrometry. The obtained results allowed for creating a growth model of an ammonothermal GaN crystal on a lenticular seed. These findings are of great importance for the general understanding of the basic ammonothermal crystal growth process of GaN.

7.
Materials (Basel) ; 14(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34639870

RESUMO

X-ray topography defect analysis of entire 1.8-inch GaN substrates, using the Borrmann effect, is presented in this paper. The GaN wafers were grown by the ammonothermal method. Borrmann effect topography of anomalous transmission could be applied due to the low defect density of the substrates. It was possible to trace the process and growth history of the GaN crystals in detail from their defect pattern imaged. Microscopic defects such as threading dislocations, but also macroscopic defects, for example dislocation clusters due to preparation insufficiency, traces of facet formation, growth bands, dislocation walls and dislocation bundles, were detected. Influences of seed crystal preparation and process parameters of crystal growth on the formation of the defects are discussed.

8.
Materials (Basel) ; 14(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916560

RESUMO

Ultrasonically welded hybrid aluminum/fiber-reinforced PEEK joints were analyzed non-destructively with an X-ray microscope. The potential and limitations of the technology as a non-destructive testing method were investigated. For a quantitative evaluation, joints with suitable and unsuitable parameters were compared. For a further comparison, geometric modifications of the joining partners were made, and the influence on the structure and process variation of the resulting hybrid joints was examined on a microscopic level. By using a tool for 3D segmentation of the composition of the joining zone, quantitative information on volume-specific proportions could be obtained and compared in relation to each other.

9.
Sensors (Basel) ; 20(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731347

RESUMO

The development of sensitive biosensors, such as gallium nitride (GaN)-based quantum wells, transistors, etc., often makes it necessary to functionalize GaN surfaces with small molecules or even biomolecules, such as proteins. As a first step in surface functionalization, we have investigated silane adsorption, as well as the formation of very thin silane layers. In the next step, the immobilization of the tetrameric protein streptavidin (as well as the attachment of chemically modified iron transport protein ferritin (ferritin-biotin-rhodamine complex)) was realized on these films. The degree of functionalization of the GaN surfaces was determined by fluorescence measurements with fluorescent-labeled proteins; silane film thickness and surface roughness were estimated, and also other surface sensitive techniques were applied. The formation of a monolayer consisting of adsorbed organosilanes was accomplished on Mg-doped GaN surfaces, and also functionalization with proteins was achieved. We found that very high Mg doping reduced the amount of surface functionalized proteins. Most likely, this finding was a consequence of the lower concentration of ionizable Mg atoms in highly Mg-doped layers as a consequence of self-compensation effects. In summary, we could demonstrate the necessity of Mg doping for achieving reasonable bio-functionalization of GaN surfaces.

10.
Materials (Basel) ; 13(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369946

RESUMO

Aluminum containing Mn+1AXn (MAX) phase materials have attracted increasing attention due to their corrosion resistance, a pronounced self-healing effect and promising diffusion barrier properties for hydrogen. We synthesized Ti2AlN coatings on ferritic steel substrates by physical vapor deposition of alternating Ti- and AlN-layers followed by thermal annealing. The microstructure developed a {0001}-texture with platelet-like shaped grains. To investigate the oxidation behavior, the samples were exposed to a temperature of 700 °C in a muffle furnace. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) depth profiles revealed the formation of oxide scales, which consisted mainly of dense and stable α-Al2O3. The oxide layer thickness increased with a time dependency of ~t1/4. Electron probe micro analysis (EPMA) scans revealed a diffusion of Al from the coating into the substrate. Steel membranes with as-deposited Ti2AlN and partially oxidized Ti2AlN coatings were used for permeation tests. The permeation of deuterium from the gas phase was measured in an ultra-high vacuum (UHV) permeation cell by mass spectrometry at temperatures of 30-400 °C. We obtained a permeation reduction factor (PRF) of 45 for a pure Ti2AlN coating and a PRF of ~3700 for the oxidized sample. Thus, protective coatings, which prevent hydrogen-induced corrosion, can be achieved by the proper design of Ti2AlN coatings with suitable oxide scale thicknesses.

11.
Nanotechnology ; 23(23): 235607, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22609898

RESUMO

In this work, the controlled fabrication of highly ordered ZnO nanowire (NW) arrays on silicon substrates is reported. Si NWs fabricated by a combination of phase shift lithography and etching are used as a template and are subsequently substituted by ZnO NWs with a dry-etching technique and atomic layer deposition. This fabrication technique allows the vertical ZnO NWs to be fabricated on 4 in Si wafers. Room temperature photoluminescence and micro-photoluminescence are used to observe the optical properties of the atomic layer deposition (ALD) based ZnO NWs. The sharp UV luminescence observed from the ALD ZnO NWs is unexpected for the polycrystalline nanostructure. Surprisingly, the defect related luminescence is much decreased compared to an ALD ZnO film deposited at the same time ona plane substrate. Electrical characterization was carried out by using nanomanipulators. With the p-type Si substrate and the n-type ZnO NWs the nanodevices represent p­n NW diodes.The nanowire diodes show a very high breakthrough potential which implies that the ALD ZnO NWs can be used for future electronic applications.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Semicondutores , Silício/química , Óxido de Zinco/química , Condutividade Elétrica , Galvanoplastia , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
12.
Beilstein J Nanotechnol ; 3: 895-908, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23365803

RESUMO

We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen-vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon-vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition.

13.
ACS Nano ; 4(8): 4824-30, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20731457

RESUMO

Photonic active diamond nanoparticles attract increasing attention from a wide community for applications in drug delivery and monitoring experiments as they do not bleach or blink over extended periods of time. To be utilized, the size of these diamond nanoparticles needs to be around 4 nm. Cluster formation is therefore the major problem. In this paper we introduce a new technique to modify the surface of particles with hydrogen, which prevents cluster formation in buffer solution and which is a perfect starting condition for chemical surface modifications. By annealing aggregated nanodiamond powder in hydrogen gas, the large (>100 nm) aggregates are broken down into their core ( approximately 4 nm) particles. Dispersion of these particles into water via high power ultrasound and high speed centrifugation, results in a monodisperse nanodiamond colloid, with exceptional long time stability in a wide range of pH, and with high positive zeta potential (>60 mV). The large change in zeta potential resulting from this gas treatment demonstrates that nanodiamond particle surfaces are able to react with molecular hydrogen at relatively low temperatures, a phenomenon not witnessed with larger (20 nm) diamond particles or bulk diamond surfaces.


Assuntos
Diamante/química , Nanopartículas/química , Coloides , Hidrogênio/química , Concentração de Íons de Hidrogênio , Hidrogenação , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...