Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stress Chaperones ; 29(1): 21-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320449

RESUMO

J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.


Assuntos
Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Polônia , Proteínas de Choque Térmico HSP40/metabolismo
2.
Cell Death Discov ; 9(1): 376, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838776

RESUMO

Alzheimer's disease is the most common age-associated neurodegenerative disorder and the most frequent form of dementia in our society. Aging is a complex biological process concurrently shaped by genetic, dietary and environmental factors and natural compounds are emerging for their beneficial effects against age-related disorders. Besides their antioxidant activity often described in simple model organisms, the molecular mechanisms underlying the beneficial effects of different dietary compounds remain however largely unknown. In the present study, we exploit the nematode Caenorhabditis elegans as a widely established model for aging studies, to test the effects of different natural compounds in vivo and focused on mechanistic aspects of one of them, quercetin, using complementary systems and assays. We show that quercetin has evolutionarily conserved beneficial effects against Alzheimer's disease (AD) pathology: it prevents Amyloid beta (Aß)-induced detrimental effects in different C. elegans AD models and it reduces Aß-secretion in mammalian cells. Mechanistically, we found that the beneficial effects of quercetin are mediated by autophagy-dependent reduced expression of Abl tyrosine kinase. In turn, autophagy is required upon Abl suppression to mediate quercetin's protective effects against Aß toxicity. Our data support the power of C. elegans as an in vivo model to investigate therapeutic options for AD.

3.
Cell Stress Chaperones ; 28(6): 631-640, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37731161

RESUMO

Protein quality control pathways ensure a functional proteome and rely on a complex proteostasis network (PN) that is composed of molecular chaperones and proteases. Failures in the PN can lead to a broad spectrum of diseases, including neurodegenerative disorders like Alzheimer's, Parkinson's, and a range of motor neuron diseases. The EMBO workshop "Protein quality control: from molecular mechanisms to therapeutic intervention" covered all aspects of protein quality control from underlying molecular mechanisms of chaperones and proteases to stress signaling pathways and medical implications. This report summarizes the workshop and highlights selected presentations.


Assuntos
Dobramento de Proteína , Proteostase , Croácia , Chaperonas Moleculares/metabolismo , Peptídeo Hidrolases/metabolismo
4.
J Mol Endocrinol ; 70(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36129170

RESUMO

Proteolytic cleavage of thyroglobulin (Tg) for thyroid hormone (TH) liberation is followed by TH release from thyroid follicles into the circulation, enabled by TH transporters. The existence of a functional link between Tg-processing cathepsin proteases and TH transporters has been shown to be independent of the hypothalamus-pituitary-thyroid axis. Thus, lack of cathepsin K, combined with genetic defects in the TH transporters Mct8 and Mct10, that is the Ctsk-/-/Mct8-/y/Mct10-/- genotype, results in persistent Tg proteolysis due to autophagy induction. Because amino acid transport by L-type amino acid transporter 2 (Lat2) has been described to regulate autophagy, we asked whether Lat2 availability is affected in Ctsk-/-/Mct8-/y/Mct10-/- thyroid glands. Our data revealed that while mRNA amounts and subcellular localization of Lat2 remained unaltered in thyroid tissue of Ctsk-/-/Mct8-/y/Mct10-/- mice in comparison to WT controls, the Lat2 protein amounts were significantly reduced. These data suggest a direct link between Lat2 function and autophagy induction in Ctsk-/-/Mct8-/y/Mct10-/- mice. Indeed, thyroid tissue of Lat2-/- mice showed enhanced endo-lysosomal cathepsin activities, increased autophagosome formation, and enhanced autophagic flux. Collectively, these results suggest a mechanistic link between insufficient Lat2 protein function and autophagy induction in the thyroid gland of male mice.


Assuntos
Sistemas de Transporte de Aminoácidos , Autofagia , Glândula Tireoide , Animais , Masculino , Camundongos , Autofagia/genética , Catepsinas , Genótipo
6.
Nat Cell Biol ; 24(11): 1563-1564, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36302972
7.
Front Mol Neurosci ; 14: 721749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720872

RESUMO

Huntington's disease is a dominantly inherited neurodegenerative disorder caused by the expansion of a CAG repeat, encoding for the amino acid glutamine (Q), present in the first exon of the protein huntingtin. Over the threshold of Q39 HTT exon 1 (HTTEx1) tends to misfold and aggregate into large intracellular structures, but whether these end-stage aggregates or their on-pathway intermediates are responsible for cytotoxicity is still debated. HTTEx1 can be separated into three domains: an N-terminal 17 amino acid region, the polyglutamine (polyQ) expansion and a C-terminal proline rich domain (PRD). Alongside the expanded polyQ, these flanking domains influence the aggregation propensity of HTTEx1: with the N17 initiating and promoting aggregation, and the PRD modulating it. In this study we focus on the first 11 amino acids of the PRD, a stretch of pure prolines, which are an evolutionary recent addition to the expanding polyQ region. We hypothesize that this proline region is expanding alongside the polyQ to counteract its ability to misfold and cause toxicity, and that expanding this proline region would be overall beneficial. We generated HTTEx1 mutants lacking both flanking domains singularly, missing the first 11 prolines of the PRD, or with this stretch of prolines expanded. We then followed their aggregation landscape in vitro with a battery of biochemical assays, and in vivo in novel models of C. elegans expressing the HTTEx1 mutants pan-neuronally. Employing fluorescence lifetime imaging we could observe the aggregation propensity of all HTTEx1 mutants during aging and correlate this with toxicity via various phenotypic assays. We found that the presence of an expanded proline stretch is beneficial in maintaining HTTEx1 soluble over time, regardless of polyQ length. However, the expanded prolines were only advantageous in promoting the survival and fitness of an organism carrying a pathogenic stretch of Q48 but were extremely deleterious to the nematode expressing a physiological stretch of Q23. Our results reveal the unique importance of the prolines which have and still are evolving alongside expanding glutamines to promote the function of HTTEx1 and avoid pathology.

8.
EMBO J ; 40(21): e107568, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34617299

RESUMO

While aggregation-prone proteins are known to accelerate aging and cause age-related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG-4, SERF1A, and SERF2 have recently been identified as cellular modifiers of such proteotoxicity. Using a peptide array screening approach on human amyloidogenic proteins, we found that SERF2 interacted with protein segments enriched in negatively charged and hydrophobic, aromatic amino acids. The absence of such segments, or the neutralization of the positive charge in SERF2, prevented these interactions and abolished the amyloid-promoting activity of SERF2. In protein aggregation models in the nematode worm Caenorhabditis elegans, protein aggregation and toxicity were suppressed by mutating the endogenous locus of MOAG-4 to neutralize charge. Our data indicate that MOAG-4 and SERF2 drive protein aggregation and toxicity by interactions with negatively charged segments in aggregation-prone proteins. Such charge interactions might accelerate primary nucleation of amyloid by initiating structural changes and by decreasing colloidal stability. Our study points at charge interactions between cellular modifiers and amyloidogenic proteins as potential targets for interventions to reduce age-related protein toxicity.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas do Tecido Nervoso/química , alfa-Sinucleína/química , Sequência de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Agregados Proteicos , Análise Serial de Proteínas , Ligação Proteica , Transdução de Sinais , Eletricidade Estática , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
10.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466458

RESUMO

The thyroid gland is both a thyroid hormone (TH) generating as well as a TH responsive organ. It is hence crucial that cathepsin-mediated proteolytic cleavage of the precursor thyroglobulin is regulated and integrated with the subsequent export of TH into the blood circulation, which is enabled by TH transporters such as monocarboxylate transporters Mct8 and Mct10. Previously, we showed that cathepsin K-deficient mice exhibit the phenomenon of functional compensation through cathepsin L upregulation, which is independent of the canonical hypothalamus-pituitary-thyroid axis, thus, due to auto-regulation. Since these animals also feature enhanced Mct8 expression, we aimed to understand if TH transporters are part of the thyroid auto-regulatory mechanisms. Therefore, we analyzed phenotypic differences in thyroid function arising from combined cathepsin K and TH transporter deficiencies, i.e., in Ctsk-/-/Mct10-/-, Ctsk-/-/Mct8-/y, and Ctsk-/-/Mct8-/y/Mct10-/-. Despite the impaired TH export, thyroglobulin degradation was enhanced in the mice lacking Mct8, particularly in the triple-deficient genotype, due to increased cathepsin amounts and enhanced cysteine peptidase activities, leading to ongoing thyroglobulin proteolysis for TH liberation, eventually causing self-thyrotoxic thyroid states. The increased cathepsin amounts were a consequence of autophagy-mediated lysosomal biogenesis that is possibly triggered due to the stress accompanying intrathyroidal TH accumulation, in particular in the Ctsk-/-/Mct8-/y/Mct10-/- animals. Collectively, our data points to the notion that the absence of cathepsin K and Mct8 leads to excessive thyroglobulin degradation and TH liberation in a non-classical pathway of thyroid auto-regulation.


Assuntos
Autofagia/fisiologia , Catepsina K/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Tireoglobulina/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Transporte Biológico , Catepsina L/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hipófise/metabolismo
11.
Exp Cell Res ; 399(2): 112491, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33460589

RESUMO

HSP70 chaperones, J-domain proteins (JDPs) and nucleotide exchange factors (NEF) form functional networks that have the ability to prevent and reverse the aggregation of proteins associated with neurodegenerative diseases. JDPs can interact with specific substrate proteins, hold them in a refolding-competent conformation and target them to specific HSP70 chaperones for remodeling. Thereby, JDPs select specific substrates and constitute an attractive target for pharmacological intervention of neurodegenerative diseases. This, under the condition that the exact mechanism of JDPs interaction with specific substrates is unveiled. In this review, we provide an overview of the structural and functional variety of JDPs that interact with neurodegenerative disease-associated proteins and we highlight those studies that identified specific residues, domains or regions of JDPs that are crucial for substrate binding.


Assuntos
Proteínas de Transporte/metabolismo , Doenças Neurodegenerativas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Animais , Proteínas de Transporte/química , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Doenças Neurodegenerativas/patologia , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas/fisiologia , Mapas de Interação de Proteínas/fisiologia
12.
Prog Neurobiol ; 198: 101907, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32926945

RESUMO

Protein misfolding and aggregation are hallmarks of neurodegenerative diseases such as Alzheimer's disease (AD). In AD, the accumulation and aggregation of tau and the amyloid-beta peptide Aß1-42 precedes the onset of AD symptoms. Modelling the aggregation of Aß is technically very challenging in vivo due to its size of only 42 aa. Here, we employed sub-stoichiometric labelling of Aß1-42 in C. elegans to enable tracking of the peptide in vivo, combined with the "native" aggregation of unlabeled Aß1-42. Expression of Aß1-42 leads to severe physiological defects, neuronal dysfunction and neurodegeneration. Moreover, we can demonstrate spreading of neuronal Aß to other tissues. Fluorescence lifetime imaging microscopy enabled a quantification of the formation of amyloid fibrils with ageing and revealed a heterogenic yet specific pattern of aggregation. Notably, we found that Aß aggregation starts in a subset of neurons of the anterior head ganglion, the six IL2 neurons. We further demonstrate that cell-specific, RNAi-mediated depletion of Aß in these IL2 neurons systemically delays Aß aggregation and pathology.


Assuntos
Neurônios , Doença de Alzheimer , Amiloide , Peptídeos beta-Amiloides , Animais , Caenorhabditis elegans , Interleucina-2 , Fragmentos de Peptídeos , Virulência
13.
Cell Rep ; 32(7): 108050, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814053

RESUMO

Interactome maps are valuable resources to elucidate protein function and disease mechanisms. Here, we report on an interactome map that focuses on neurodegenerative disease (ND), connects ∼5,000 human proteins via ∼30,000 candidate interactions and is generated by systematic yeast two-hybrid interaction screening of ∼500 ND-related proteins and integration of literature interactions. This network reveals interconnectivity across diseases and links many known ND-causing proteins, such as α-synuclein, TDP-43, and ATXN1, to a host of proteins previously unrelated to NDs. It facilitates the identification of interacting proteins that significantly influence mutant TDP-43 and HTT toxicity in transgenic flies, as well as of ARF-GEP100 that controls misfolding and aggregation of multiple ND-causing proteins in experimental model systems. Furthermore, it enables the prediction of ND-specific subnetworks and the identification of proteins, such as ATXN1 and MKL1, that are abnormally aggregated in postmortem brains of Alzheimer's disease patients, suggesting widespread protein aggregation in NDs.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Doenças Neurodegenerativas/genética , Agregados Proteicos/genética , Mapeamento de Interação de Proteínas/métodos , Humanos
14.
J Vis Exp ; (160)2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32597843

RESUMO

Proteins are synthesized and degraded constantly within a cell to maintain homeostasis. Being able to monitor the degradation of a protein of interest is key to understanding not only its life cycle, but also to uncover imbalances in the proteostasis network. This method shows how to track the degradation of the disease-causing protein huntingtin. Two versions of huntingtin fused to Dendra2 are expressed in the C. elegans nervous system: a physiological version or one with an expanded and pathogenic stretch of glutamines. Dendra2 is a photoconvertible fluorescent protein; upon a short ultraviolet (UV) irradiation pulse, Dendra2 switches its excitation/emission spectra from green to red. Similar to a pulse-chase experiment, the turnover of the converted red-Dendra2 can be monitored and quantified, regardless of the interference from newly synthesized green-Dendra2. Using confocal-based microscopy and due to the optical transparency of C. elegans, it is possible to monitor and quantify the degradation of huntingtin-Dendra2 in a living, aging organism. Neuronal huntingtin-Dendra2 is partially degraded soon after conversion and cleared further over time. The systems controlling degradation are deficient in the presence of mutant huntingtin and are further impaired with aging. Neuronal subtypes within the same nervous system exhibit different turnover capacities for huntingtin-Dendra2. Overall, monitoring any protein of interest fused to Dendra2 can provide important information not only on its degradation and the players of the proteostasis network involved, but also on its location, trafficking, and transport.


Assuntos
Caenorhabditis elegans/metabolismo , Proteínas Luminescentes/metabolismo , Envelhecimento/metabolismo , Animais , Proteínas Luminescentes/genética , Microscopia Confocal , Transporte Proteico , Proteólise
15.
J Vis Exp ; (157)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281971

RESUMO

Amyloid fibrils are associated with a number of neurodegenerative diseases such as Huntington's, Parkinson's, or Alzheimer's disease. These amyloid fibrils can sequester endogenous metastable proteins as well as components of the proteostasis network (PN) and thereby exacerbate protein misfolding in the cell. There are a limited number of tools available to assess the aggregation process of amyloid proteins within an animal. We present a protocol for fluorescence lifetime microscopy (FLIM) that allows monitoring as well as quantification of the amyloid fibrilization in specific cells, such as neurons, in a noninvasive manner and with the progression of aging and upon perturbation of the PN. FLIM is independent of the expression levels of the fluorophore and enables an analysis of the aggregation process without any further staining or bleaching. Fluorophores are quenched when they are in close vicinity of amyloid structures, which results in a decrease of the fluorescence lifetime. The quenching directly correlates with the aggregation of the amyloid protein. FLIM is a versatile technique that can be applied to compare the fibrilization process of different amyloid proteins, environmental stimuli, or genetic backgrounds in vivo in a non-invasive manner.


Assuntos
Caenorhabditis elegans/metabolismo , Fluorescência , Imagem Óptica/métodos , Animais
16.
J Biol Chem ; 295(10): 3064-3079, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32001616

RESUMO

Small heat shock proteins (sHsps) are conserved, ubiquitous members of the proteostasis network. Canonically, they act as "holdases" and buffer unfolded or misfolded proteins against aggregation in an ATP-independent manner. Whereas bacteria and yeast each have only two sHsps in their genomes, this number is higher in metazoan genomes, suggesting a spatiotemporal and functional specialization in higher eukaryotes. Here, using recombinantly expressed and purified proteins, static light-scattering analysis, and disaggregation assays, we report that the noncanonical sHsp HSP-17 of Caenorhabditis elegans facilitates aggregation of model substrates, such as malate dehydrogenase (MDH), and inhibits disaggregation of luciferase in vitro Experiments with fluorescently tagged HSP-17 under the control of its endogenous promoter revealed that HSP-17 is expressed in the digestive and excretory organs, where its overexpression promotes the aggregation of polyQ proteins and of the endogenous kinase KIN-19. Systemic depletion of hsp-17 shortens C. elegans lifespan and severely reduces fecundity and survival upon prolonged heat stress. HSP-17 is an abundant protein exhibiting opposing chaperone activities on different substrates, indicating that it is a selective protein aggregase with physiological roles in development, digestion, and osmoregulation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Caseína Quinase I/química , Caseína Quinase I/metabolismo , Proteínas de Choque Térmico Pequenas/antagonistas & inibidores , Proteínas de Choque Térmico Pequenas/genética , Longevidade , Malato Desidrogenase/metabolismo , Peptídeos/metabolismo , Agregados Proteicos , Dobramento de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
17.
Autophagy ; 16(5): 878-899, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31354022

RESUMO

Aging is associated with a gradual decline of cellular proteostasis, giving rise to devastating protein misfolding diseases, such as Alzheimer disease (AD) or Parkinson disease (PD). These diseases often exhibit a complex pathology involving non-cell autonomous proteotoxic effects, which are still poorly understood. Using Caenorhabditis elegans we investigated how local protein misfolding is affecting neighboring cells and tissues showing that misfolded PD-associated SNCA/α-synuclein is accumulating in highly dynamic endo-lysosomal vesicles. Irrespective of whether being expressed in muscle cells or dopaminergic neurons, accumulated proteins were transmitted into the hypodermis with increasing age, indicating that epithelial cells might play a role in remote degradation when the local endo-lysosomal degradation capacity is overloaded. Cell biological and genetic approaches revealed that inter-tissue dissemination of SNCA was regulated by endo- and exocytosis (neuron/muscle to hypodermis) and basement membrane remodeling (muscle to hypodermis). Transferred SNCA conformers were, however, inefficiently cleared and induced endo-lysosomal membrane permeabilization. Remarkably, reducing INS (insulin)-IGF1 (insulin-like growth factor 1) signaling provided protection by maintaining endo-lysosomal integrity. This study suggests that the degradation of lysosomal substrates is coordinated across different tissues in metazoan organisms. Because the chronic dissemination of poorly degradable disease proteins into neighboring tissues exerts a non-cell autonomous toxicity, this implies that restoring endo-lysosomal function not only in cells with pathological inclusions, but also in apparently unaffected cell types might help to halt disease progression.Abbreviations: AD: Alzheimer disease; BM: basement membrane; BWM: body wall muscle; CEP: cephalic sensilla; CLEM: correlative light and electron microscopy; CTNS-1: cystinosin (lysosomal protein) homolog; DA: dopaminergic; DAF-2: abnormal dauer formation; ECM: extracellular matrix; FLIM: fluorescence lifetime imaging microscopy; fps: frames per second; GFP: green fluorescent protein; HPF: high pressure freezing; IGF1: insulin-like growth factor 1; INS: insulin; KD: knockdown; LMP: lysosomal membrane permeabilization; MVB: multivesicular body; NOC: nocodazole; PD: Parkinson disease; RFP: red fluorescent protein; RNAi: RNA interference; sfGFP: superfolder GFP; SNCA: synuclein alpha; TEM: transmission electron microscopy; TNTs: tunneling nanotubes; TCSPC: time correlated single photon counting; YFP: yellow fluorescent protein.


Assuntos
Envelhecimento/fisiologia , Autofagia/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Exocitose/fisiologia , Humanos , Lisossomos/metabolismo
18.
Front Aging Neurosci ; 11: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30760997

RESUMO

A functional protein quality control machinery is crucial to maintain cellular and organismal physiology. Perturbation in the protein homeostasis network can lead to the formation of misfolded and aggregated proteins that are a hallmark of protein conformational disorders and aging. Protein aggregation is counteracted by the action of chaperones that can resolubilize aggregated proteins. An alternative protein aggregation clearance strategy is the elimination by proteolysis employing the ubiquitin proteasome system (UPS) or autophagy. Little is known how these three protein aggregate clearance strategies are regulated and coordinated in an organism with the progression of aging or upon expression of disease-associated proteins. To unravel the crosstalk between the protein aggregate clearance options, we investigated how autophagy and the UPS respond to perturbations in protein disaggregation capacity. We found that autophagy is induced as a potential compensatory mechanism, whereas the UPS exhibits reduced capacity upon depletion of disaggregating chaperones in C. elegans and HEK293 cells. The expression of amyloid proteins Aß3-42 and Q40 result in an impairment of autophagy as well as the UPS within the same and even across tissues. Our data indicate a tight coordination between the different nodes of the proteostasis network (PN) with the progression of aging and upon imbalances of the capacity of each clearance mechanism.

19.
Nat Commun ; 10(1): 486, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700723

RESUMO

Drebrin (DBN) regulates cytoskeletal functions during neuronal development, and is thought to contribute to structural and functional synaptic changes associated with aging and Alzheimer's disease. Here we show that DBN coordinates stress signalling with cytoskeletal dynamics, via a mechanism involving kinase ataxia-telangiectasia mutated (ATM). An excess of reactive oxygen species (ROS) stimulates ATM-dependent phosphorylation of DBN at serine-647, which enhances protein stability and accounts for improved stress resilience in dendritic spines. We generated a humanized DBN Caenorhabditis elegans model and show that a phospho-DBN mutant disrupts the protective ATM effect on lifespan under sustained oxidative stress. Our data indicate a master regulatory function of ATM-DBN in integrating cytosolic stress-induced signalling with the dynamics of actin remodelling to provide protection from synapse dysfunction and ROS-triggered reduced lifespan. They further suggest that DBN protein abundance governs actin filament stability to contribute to the consequences of oxidative stress in physiological and pathological conditions.


Assuntos
Actinas/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Estresse Oxidativo , Actinas/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Motivos de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Caenorhabditis elegans , Células Cultivadas , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/genética , Fosforilação , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
20.
Protein Eng Des Sel ; 32(10): 443-457, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32399571

RESUMO

The accumulation of toxic protein aggregates is thought to play a key role in a range of degenerative pathologies, but it remains unclear why aggregation of polypeptides into non-native assemblies is toxic and why cellular clearance pathways offer ineffective protection. We here study the A4V mutant of SOD1, which forms toxic aggregates in motor neurons of patients with familial amyotrophic lateral sclerosis (ALS). A comparison of the location of aggregation prone regions (APRs) and Hsp70 binding sites in the denatured state of SOD1 reveals that ALS-associated mutations promote exposure of the APRs more than the strongest Hsc/Hsp70 binding site that we could detect. Mutations designed to increase the exposure of this Hsp70 interaction site in the denatured state promote aggregation but also display an increased interaction with Hsp70 chaperones. Depending on the cell type, in vitro this resulted in cellular inclusion body formation or increased clearance, accompanied with a suppression of cytotoxicity. The latter was also observed in a zebrafish model in vivo. Our results suggest that the uncontrolled accumulation of toxic SOD1A4V aggregates results from insufficient detection by the cellular surveillance network.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Choque Térmico HSP70/metabolismo , Mutação , Engenharia de Proteínas , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Superóxido Dismutase-1/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...