Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 387(2): 214-225, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37643795

RESUMO

Hereditary angioedema (HAE) is a rare autosomal dominant disorder caused by a deficiency in functional C1 esterase inhibitor, a serpin family protein that blocks the activity of plasma kallikrein. Insufficient inhibition of plasma kallikrein results in the overproduction of bradykinin, a vasoactive inflammatory mediator that produces both pain and unpredictable swelling during HAE attacks, with potentially life-threatening consequences. We describe the generation of STAR-0215, a humanized IgG1 antibody with a long circulating half-life (t1/2) that potently inhibits plasma kallikrein activity, with a >1000-fold lower affinity for prekallikrein and no measurable inhibitory activity against other serine proteases. The high specificity and inhibitory effect of STAR-0215 is demonstrated through a unique allosteric mechanism involving N-terminal catalytic domain binding, destabilization of the activation domain, and reversion of the active site to the inactive zymogen state. The YTE (M252Y/S254T/T256E) modified fragment crystallizable (Fc) domain of STAR-0215 enhances pH-dependent neonatal Fc receptor binding, resulting in a prolonged t1/2 in vivo (∼34 days in cynomolgus monkeys) compared with antibodies without this modification. A single subcutaneous dose of STAR-0215 (≥100 mg) was predicted to be active in patients for 3 months or longer, based on simulations using a minimal physiologically based pharmacokinetic model. These data indicate that STAR-0215, a highly potent and specific antibody against plasma kallikrein with extended t1/2, is a potential agent for long-term preventative HAE therapy administered every 3 months or less frequently. SIGNIFICANCE STATEMENT: STAR-0215 is a YTE-modified immunoglobulin G1 monoclonal antibody with a novel binding mechanism that specifically and potently inhibits the enzymatic activity of plasma kallikrein and prevents the generation of bradykinin. It has been designed to be a long-lasting prophylactic treatment to prevent attacks of HAE and to decrease the burden of disease and the burden of treatment for people with HAE.

2.
Mitochondrion ; 13(4): 282-91, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23542163

RESUMO

The mitochondrial DNA (mtDNA) polymerase γ (POLG) mutator mice provide the first experimental evidence that high levels of somatic mtDNA mutations can be functionally significant. Here we report that older homozygous, but not heterozygous, POLG mice show significant reductions in striatal dopaminergic terminals as well as deficits in motor function. However, resting oxygen consumption, heat production, mtDNA content and mitochondrial electron transport chain activities are significantly decreased at older ages in both homozygous and heterozygous mice. These results indicate that high levels of somatic mtDNA mutations can contribute to dopaminergic dysfunction and to behavioral and metabolic deficits.


Assuntos
DNA Mitocondrial/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mutação , Animais , DNA Polimerase gama , Transtornos Neurológicos da Marcha , Heterozigoto , Homozigoto , Temperatura Alta , Camundongos , Consumo de Oxigênio , Córtex Visual/patologia
3.
PLoS One ; 7(11): e48925, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145024

RESUMO

Multiple mechanisms likely contribute to neuronal death in Parkinson's disease (PD), including mitochondrial dysfunction and oxidative stress. Peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC-1α) positively regulates the expression of genes required for mitochondrial biogenesis and the cell's antioxidant responses. Also, expression of PGC-1α-regulated genes is low in substantia nigra (SN) neurons in early PD. Thus upregulation of PGC-1α is a candidate neuroprotective strategy in PD. Here, an adeno-associated virus (AAV) was used to induce unilateral overexpression of Pgc-1α, or a control gene, in the SN of wild-type C57BL/6CR mice. Three weeks after AAV administration, mice were treated with saline or MPTP. Overexpression of Pgc-1α in the SN induced expression of target genes, but unexpectedly it also greatly reduced the expression of tyrosine hydroxylase (Th) and other markers of the dopaminergic phenotype with resultant severe loss of striatal dopamine. Reduced Th expression was associated with loss of Pitx3, a transcription factor that is critical for the development and maintenance of dopaminergic cells. Expression of the neurotrophic factor Bdnf, which also is regulated by Pitx3, similarly was reduced. Overexpression of Pgc-1α also led to increased sensitivity to MPTP-induced death of Th+ neurons. Pgc-1α overexpression alone, in the absence of MPTP treatment, did not lead to cell loss in the SN or to loss of dopaminergic terminals. These data demonstrate that overexpression of Pgc-1α results in dopamine depletion associated with lower levels of Pitx3 and enhances susceptibility to MPTP. These data may have ramifications for neuroprotective strategies targeting overexpression of PGC-1α in PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas de Homeodomínio/genética , Intoxicação por MPTP/genética , Transativadores/genética , Fatores de Transcrição/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Dependovirus/metabolismo , Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo , Proteínas de Homeodomínio/metabolismo , Intoxicação por MPTP/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Transativadores/biossíntese , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...