Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 93(45): 14985-14995, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34735131

RESUMO

Identifying the targets of a drug is critical to understand the mechanism of action and predicts possible side effects. The conventional approach is capturing interacting proteins by affinity purification. However, it requires drugs to be immobilized to a solid support or derivatized with chemical moieties used for pulling down interacting proteins. Such covalent modifications to drugs may mask a critical recognition site for or alter the binding affinity to their targets. To overcome the drawback, several methods that do not require covalent modifications to drugs have been developed. These methods identify targets by detecting proteins whose thermodynamic stability is enhanced in the presence of drugs. Although the utility of these methods has been demonstrated, the difficulty in identifying low abundant targets is the common problem of these methods. We have developed a new target identification method that increases the likelihood of identifying low abundant targets. The method uses histidine-hydrogen deuterium exchange (His-HDX) as a readout technique to probe the changes in protein stability induced by drugs. The workflow involves incubating cell lysates in various concentrations of a protein denaturant in the presence and absence of a drug in D2O followed by digestion of the proteins, enrichment of His-containing peptides, and analysis of the enriched His-peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The developed method was successfully applied to identify the interaction between endogenously expressed MAPK14 and its inhibitor in HEK293 cell lysates. The implementation of selective enrichment of histidine-containing peptides in the workflow was a key that enabled identifying the MAPK14-inhibitor interaction.


Assuntos
Medição da Troca de Deutério , Histidina , Cromatografia Líquida , Deutério , Interações Medicamentosas , Células HEK293 , Humanos , Hidrogênio , Espectrometria de Massas em Tandem
2.
Biosci Biotechnol Biochem ; 83(11): 2034-2048, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31282289

RESUMO

Protein-protein interactions (PPIs) lead the formation of protein complexes that perform biochemical reactions that maintain the living state of the living cell. Although therapeutic drugs should influence the formation of protein complexes in addition to PPI network, the methodology analyzing such influences remain to be developed. Here, we demonstrate that a new approach combining HPLC (high performance liquid chromatography) for separating protein complexes, and the SILAC (stable isotope labeling using amino acids in cell culture) method for relative protein quantification, enable us to identify the protein complexes influenced by a drug. We applied this approach to the analysis of thalidomide action on HepG2 cells, assessed the identified proteins by clustering data analyses, and assigned 135 novel protein complexes affected by the drug. We propose that this approach is applicable to elucidating the mechanisms of actions of other therapeutic drugs on the PPI network, and the formation of protein complexes.


Assuntos
Aminoácidos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas/química , Proteínas/metabolismo , Proteômica , Células Hep G2 , Humanos , Marcação por Isótopo , Talidomida/farmacologia
3.
Proteomics ; 11(3): 485-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21268277

RESUMO

Protein termini play important roles in biological processes, but there have been few methods for comprehensive terminal proteomics. We have developed a new method that can identify both the amino and the carboxyl termini of proteins. The method independently uses two proteases, (lysyl endopeptidase) Lys-C and peptidyl-Lys metalloendopeptidase (Lys-N), to digest proteins, followed by LC-MS/MS analysis of the two digests. Terminal peptides can be identified by comparing the peptide masses in the two digests as follows: (i) the amino terminal peptide of a protein in Lys-C digest is one lysine residue mass heavier than that in Lys-N digest; (ii) the carboxyl terminal peptide in Lys-N digest is one lysine residue mass heavier than that in Lys-C digest; and (iii) all internal peptides give exactly the same molecular masses in both the Lys-C and the Lys-N digest, although amino acid sequences of Lys-C and Lys-N peptides are different (Lys-C peptides end with lysine, whereas Lys-N peptides begin with lysine). The identification of terminal peptides was further verified by examining their MS/MS spectra to avoid misidentifying pairs as termini. In this study, we investigated the usefulness of this method using several protein and peptide mixtures. Known protein termini were successfully identified. Acetylation on N-terminus and protein isoforms, which have different termini, was also determined. These results demonstrate that our new method can confidently identify terminal peptides in protein mixtures.


Assuntos
Metaloendopeptidases/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Serina Endopeptidases/metabolismo , Acetilação , Animais , Cromatografia Líquida , Humanos , Lisina/química , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...