Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 224(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34713887

RESUMO

For studies on magnetic compass orientation and navigation performance in small bird species, controlled experiments with orientation cages inside an electromagnetic coil system are the most prominent methodological paradigm. These are, however, not applicable when studying larger bird species and/or orientation behaviour during free flight. For this, researchers have followed a very different approach, attaching small magnets to birds, with the intention of depriving them of access to meaningful magnetic information. Unfortunately, results from studies using this approach appear rather inconsistent. As these are based on experiments with birds under free-flight conditions, which usually do not allow exclusion of other potential orientation cues, an assessment of the overall efficacy of this approach is difficult to conduct. Here, we directly tested the efficacy of small magnets for temporarily disrupting magnetic compass orientation in small migratory songbirds using orientation cages under controlled experimental conditions. We found that birds which have access to the Earth's magnetic field as their sole orientation cue show a general orientation towards their seasonally appropriate migratory direction. When carrying magnets on their forehead under these conditions, the same birds become disoriented. However, under changed conditions that allow birds access to other (i.e. celestial) orientation cues, any disruptive effect of the magnets they carry appears obscured. Our results provide clear evidence for the efficacy of the magnet approach for temporarily disrupting magnetic compass orientation in birds, but also reveal its limitations for application in experiments under free-flight conditions.


Assuntos
Aves Canoras , Resposta Táctica , Migração Animal , Animais , Testa , Campos Magnéticos , Magnetismo , Imãs , Orientação
2.
Ecol Evol ; 11(2): 753-762, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33520163

RESUMO

How blood parasite infections influence the migration of hosts remains a lively debated issue as past studies found negative, positive, or no response to infections. This particularly applies to small birds, for which monitoring of detailed migration behavior over a whole annual cycle has been technically unachievable so far. Here, we investigate how bird migration is influenced by parasite infections. To this end, we tracked great reed warblers (Acrocephalus arundinaceus) with multisensor loggers, characterized general migration patterns as well as detailed flight bout durations, resting times and flight heights, and related these to the genus and intensity of their avian haemosporidian infections. We found migration distances to be shorter and the onset of autumn migration to be delayed with increasing intensity of blood parasite infection, in particular for birds with Plasmodium and mixed-genus infections. Additionally, the durations of migratory flight bout were prolonged for infected compared to uninfected birds. But since severely infected birds and particularly birds with mixed-genus infections had shorter resting times, initial delays seemed to be compensated for and the timing in other periods of the annual cycle was not compromised by infection. Overall, our multisensor logger approach revealed that avian blood parasites have mostly subtle effects on migratory performance and that effects can occur in specific periods of the year only.

3.
Curr Biol ; 31(7): 1563-1569.e4, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33581072

RESUMO

Displacement experiments have demonstrated that experienced migratory birds translocated thousands of kilometers away from their migratory corridor can orient toward and ultimately reach their intended destinations.1 This implies that they are capable of "true navigation," commonly defined2-4 as the ability to return to a known destination after displacement to an unknown location without relying on familiar surroundings, cues that emanate from the destination, or information collected during the outward journey.5-13 In birds, true navigation appears to require previous migratory experience5-7,14,15 (but see Kishkinev et al.16 and Piersma et al.17). It is generally assumed that, to correct for displacements outside the familiar area, birds initially gather information within their year-round distribution range, learn predictable spatial gradients of environmental cues within it, and extrapolate from those to unfamiliar magnitudes-the gradient hypothesis.6,9,18-22 However, the nature of the cues and evidence for actual extrapolation remain elusive. Geomagnetic cues (inclination, declination, and total intensity) provide predictable spatial gradients across large parts of the globe and could serve for navigation. We tested the orientation of long-distance migrants, Eurasian reed warblers, exposing them to geomagnetic cues of unfamiliar magnitude encountered beyond their natural distribution range. The birds demonstrated re-orientation toward their migratory corridor as if they were translocated to the corresponding location but only when all naturally occurring magnetic cues were presented, not when declination was changed alone. This result represents direct evidence for migratory birds' ability to navigate using geomagnetic cues extrapolated beyond their previous experience.


Assuntos
Migração Animal , Campos Magnéticos , Aves Canoras , Animais , Sinais (Psicologia)
4.
J Anim Ecol ; 89(1): 207-220, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771254

RESUMO

Currently, the deployment of tracking devices is one of the most frequently used approaches to study movement ecology of birds. Recent miniaturization of light-level geolocators enabled studying small bird species whose migratory patterns were widely unknown. However, geolocators may reduce vital rates in tagged birds and may bias obtained movement data. There is a need for a thorough assessment of the potential tag effects on small birds, as previous meta-analyses did not evaluate unpublished data and impact of multiple life-history traits, focused mainly on large species and the number of published studies tagging small birds has increased substantially. We quantitatively reviewed 549 records extracted from 74 published and 48 unpublished studies on over 7,800 tagged and 17,800 control individuals to examine the effects of geolocator tagging on small bird species (body mass <100 g). We calculated the effect of tagging on apparent survival, condition, phenology and breeding performance and identified the most important predictors of the magnitude of effect sizes. Even though the effects were not statistically significant in phylogenetically controlled models, we found a weak negative impact of geolocators on apparent survival. The negative effect on apparent survival was stronger with increasing relative load of the device and with geolocators attached using elastic harnesses. Moreover, tagging effects were stronger in smaller species. In conclusion, we found a weak effect on apparent survival of tagged birds and managed to pinpoint key aspects and drivers of tagging effects. We provide recommendations for establishing matched control group for proper effect size assessment in future studies and outline various aspects of tagging that need further investigation. Finally, our results encourage further use of geolocators on small bird species but the ethical aspects and scientific benefits should always be considered.


Assuntos
Migração Animal , Aves , Animais , Filogenia , Viés de Publicação , Estações do Ano
5.
J Exp Biol ; 221(Pt 24)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552290

RESUMO

Insect migrations are spectacular natural events and resemble a remarkable relocation of biomass between two locations in space. Unlike the well-known migrations of daytime flying butterflies, such as the painted lady (Vanessa cardui) or the monarch butterfly (Danaus plexippus), much less widely known are the migrations of nocturnal moths. These migrations - typically involving billions of moths from different taxa - have recently attracted considerable scientific attention. Nocturnal moth migrations have traditionally been investigated by light trapping and by observations in the wild, but in recent times a considerable improvement in our understanding of this phenomenon has come from studying insect orientation behaviour, using vertical-looking radar. In order to establish a new model organism to study compass mechanisms in migratory moths, we tethered each of two species of central European Noctuid moths in a flight simulator to study their flight bearings: the red underwing (Catocala nupta) and the large yellow underwing (Noctua pronuba). Both species had significantly oriented flight bearings under an unobscured view of the clear night sky and in the Earth's natural magnetic field. Red underwings oriented south-southeast, while large yellow underwings oriented southwest, both suggesting a southerly autumn migration towards the Mediterranean. Interestingly, large yellow underwings became disoriented on humid (foggy) nights while red underwings remained oriented. We found no evidence in either species for a time-independent sky compass mechanism as previously suggested for the large yellow underwing.


Assuntos
Migração Animal , Voo Animal , Mariposas/fisiologia , Orientação Espacial , Animais , Áustria , Europa (Continente) , Estações do Ano , Especificidade da Espécie
6.
Sci Rep ; 8(1): 5520, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615823

RESUMO

Long-distance avian migrants, e.g. Eurasian reed warblers (Acrocephalus scirpaceus), can precisely schedule events of their annual cycle. However, the proximate mechanisms controlling annual cycle and their interplay with environmental factors are poorly understood. We artificially interrupted breeding in reed warblers by bringing them into captivity and recording birds' locomotor activity for 5-7 days. Over this time, most of the captive birds gradually developed nocturnal locomotor activity not observed in breeding birds. When the birds were later released and radio-tracked, the individuals with highly developed caged activity performed nocturnal flights. We also found that reed warblers kept indoors without access to local cues developed a higher level of nocturnal activity compared to the birds kept outdoors with an access to the familiar environment. Also, birds translocated from a distant site (21 km) had a higher motivation to fly at night-time after release compared to the birds captured within 1 km of a study site. Our study suggests that an interrupted breeding triggers development of nocturnal locomotor activity in cages, and the level of activity is correlated with motivation to perform nocturnal flights in the wild, which can be restrained by familiar environment.


Assuntos
Migração Animal , Locomoção , Aves Canoras/fisiologia , Animais , Meio Ambiente , Voo Animal , Fatores de Tempo
7.
Curr Biol ; 27(17): 2647-2651.e2, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28823677

RESUMO

The longitude problem (determining east-west position) is a classical problem in human sea navigation. Prior to the use of GPS satellites, extraordinarily accurate clocks measuring the difference between local time and a fixed reference (e.g., GMT) [1] were needed to determine longitude. Birds do not appear to possess a time-difference clock sense [2]. Nevertheless, experienced night-migratory songbirds can correct for east-west displacements to unknown locations [3-9]. Consequently, migratory birds must solve the longitude problem in a different way, but how they do so has remained a scientific mystery [10]. We suggest that experienced adult Eurasian reed warblers (Acrocephalus scirpaceus) can use magnetic declination to solve the longitude problem at least under some circumstances under clear skies. Experienced migrants tested during autumn migration in Rybachy, Russia, were exposed to an 8.5° change in declination while all other cues remained unchanged. This corresponds to a virtual magnetic displacement to Scotland if and only if magnetic declination is a part of their map. The adult migrants responded by changing their heading by 151° from WSW to ESE, consistent with compensation for the virtual magnetic displacement. Juvenile migrants that had not yet established a navigational map also oriented WSW at the capture site but became randomly oriented when the magnetic declination was shifted 8.5°. In combination with latitudinal cues, which birds are known to detect and use [10-12], magnetic declination could provide the mostly east-west component for a true bi-coordinate navigation system under clear skies for experienced migratory birds in some areas of the globe.


Assuntos
Migração Animal , Campos Magnéticos , Orientação Espacial , Aves Canoras/fisiologia , Animais , Voo Animal , Federação Russa , Escócia
8.
Sci Rep ; 6: 37326, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876843

RESUMO

The ability to navigate implies that animals have the capability to compensate for geographical displacement and return to their initial goal or target. Although some species are capable of adjusting their direction after displacement, the environmental cues used to achieve this remain elusive. Two possible cues are geomagnetic parameters (magnetic map hypothesis) or atmospheric odour-forming gradients (olfactory map hypothesis). In this study, we examined both of these hypotheses by surgically deactivating either the magnetic or olfactory sensory systems in experienced white-throated sparrows (Zonotrichia albicollis) captured in southern Ontario, Canada, during spring migration. Treated, sham-treated, and intact birds were then displaced 2,200 km west to Saskatchewan, Canada. Tracking their initial post-displacement migration using an array of automated VHF receiving towers, we found no evidence in any of the groups for compensatory directional response towards their expected breeding grounds. Our results suggest that white-throated sparrows may fall back to a simple constant-vector orientation strategy instead of performing true navigation after they have been geographically displaced to an unfamiliar area during spring migration. Such a basic strategy may be more common than currently thought in experienced migratory birds and its occurrence could be determined by habitat preferences or range size.


Assuntos
Migração Animal/fisiologia , Orientação Espacial/fisiologia , Aves Canoras/fisiologia , Telemetria/métodos , Animais , Sinais (Psicologia) , Geografia , Objetivos , Magnetismo , Ontário , Estações do Ano , Olfato/fisiologia
10.
PLoS One ; 8(6): e65847, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840374

RESUMO

Several studies have shown that experienced night-migratory songbirds can determine their position, but it has remained a mystery which cues and sensory mechanisms they use, in particular, those used to determine longitude (east-west position). One potential solution would be to use a magnetic map or signpost mechanism like the one documented in sea turtles. Night-migratory songbirds have a magnetic compass in their eyes and a second magnetic sense with unknown biological function involving the ophthalmic branch of the trigeminal nerve (V1). Could V1 be involved in determining east-west position? We displaced 57 Eurasian reed warblers (Acrocephalus scirpaceus) with or without sectioned V1. Sham operated birds corrected their orientation towards the breeding area after displacement like the untreated controls did. In contrast, V1-sectioned birds did not correct for the displacement. They oriented in the same direction after the displacement as they had done at the capture site. Thus, an intact ophthalmic branch of the trigeminal nerve is necessary for detecting the 1,000 km eastward displacement in this night-migratory songbird. Our results suggest that V1 carries map-related information used in a large-scale map or signpost sense that the reed warblers needed to determine their approximate geographical position and/or an east-west coordinate.


Assuntos
Migração Animal/fisiologia , Aves Canoras/fisiologia , Nervo Trigêmeo/fisiologia , Animais , Geografia , Orientação/fisiologia
11.
J Exp Biol ; 214(Pt 15): 2540-3, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21753048

RESUMO

Migratory birds are able to use the sun and associated polarised light patterns, stellar cues and the geomagnetic field for orientation. No general agreement has been reached regarding the hierarchy of orientation cues. Recent data from naturally migrating North American Catharus thrushes suggests that they calibrate geomagnetic information daily from twilight cues. Similar results have been shown in caged birds in a few studies but not confirmed in others. We report that free-flying European migrants, song thrushes Turdus philomelos, released after pre-exposure to a horizontally rotated magnetic field, do not recalibrate their magnetic compass from solar cues, but rather show a simple domination of either the magnetic or the stellar compass. We suggest that different songbird species possess different hierarchies of orientation cues, depending on the geographic and ecological challenges met by the migrants.


Assuntos
Migração Animal , Voo Animal , Orientação , Aves Canoras/fisiologia , Animais , Sinais (Psicologia) , Campos Eletromagnéticos , Federação Russa , Astros Celestes , Luz Solar , Telemetria
12.
Nature ; 471(7340): E11-2; discussion E12-3, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21455128

RESUMO

Arising from W. Wiltschko et al. 419, 467-470 (2002); Wiltschko et al. replyThe magnetic compass of migratory birds is embedded in the visual system and it has been reported by Wiltschko et al. that European Robins, Erithacus rubecula, cannot show magnetic compass orientation using their left eye only. This has led to the notion that the magnetic compass should be located only in the right eye of birds. However, a complete right lateralization of the magnetic compass would be very surprising, and functional neuroanatomical data have questioned this notion. Here we show that the results of Wiltschko et al. could not be independently confirmed using double-blind protocols. European Robins can perform magnetic compass orientation with both eyes open, with the left eye open only, and with the right eye open only. No clear lateralization is observed.


Assuntos
Migração Animal/fisiologia , Olho , Magnetismo , Fenômenos Fisiológicos Oculares , Orientação/fisiologia , Aves Canoras/fisiologia , Migração Animal/efeitos da radiação , Animais , Olho/efeitos da radiação , Lateralidade Funcional/fisiologia , Modelos Biológicos , Fenômenos Fisiológicos Oculares/efeitos da radiação , Orientação/efeitos da radiação , Estimulação Luminosa , Reprodutibilidade dos Testes , Estações do Ano , Aves Canoras/anatomia & histologia
13.
Nature ; 461(7268): 1274-7, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19865170

RESUMO

Magnetic compass information has a key role in bird orientation, but the physiological mechanisms enabling birds to sense the Earth's magnetic field remain one of the unresolved mysteries in biology. Two biophysical mechanisms have become established as the most promising magnetodetection candidates. The iron-mineral-based hypothesis suggests that magnetic information is detected by magnetoreceptors in the upper beak and transmitted through the ophthalmic branch of the trigeminal nerve to the brain. The light-dependent hypothesis suggests that magnetic field direction is sensed by radical pair-forming photopigments in the eyes and that this visual signal is processed in cluster N, a specialized, night-time active, light-processing forebrain region. Here we report that European robins with bilateral lesions of cluster N are unable to show oriented magnetic-compass-guided behaviour but are able to perform sun compass and star compass orientation behaviour. In contrast, bilateral section of the ophthalmic branch of the trigeminal nerve in European robins did not influence the birds' ability to use their magnetic compass for orientation. These data show that cluster N is required for magnetic compass orientation in this species and indicate that it may be specifically involved in processing of magnetic compass information. Furthermore, the data strongly suggest that a vision-mediated mechanism underlies the magnetic compass in this migratory songbird, and that the putative iron-mineral-based receptors in the upper beak connected to the brain by the trigeminal nerve are neither necessary nor sufficient for magnetic compass orientation in European robins.


Assuntos
Migração Animal/fisiologia , Magnetismo , Orientação/fisiologia , Aves Canoras/fisiologia , Visão Ocular/fisiologia , Animais , Voo Animal/fisiologia , Sistema Solar , Nervo Trigêmeo/fisiologia , Percepção Visual/fisiologia
14.
Curr Biol ; 18(3): 188-90, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18249113

RESUMO

In order to perform true bicoordinate navigation, migratory birds need to be able to determine geographic latitude and longitude. The determination of latitude is relatively easy from either stellar or magnetic cues [1-3], but the determination of longitude seems challenging [4, 5]. It has therefore been suggested that migrating birds are unable to perform bicoordinate navigation and that they probably only determine latitude during their return migration [5]. However, proper testing of this hypothesis requires displacement experiments with night-migratory songbirds in spring that have not been performed. We therefore displaced migrating Eurasian reed warblers (Acrocephalus scirpaceus) during spring migration about 1000 km toward the east and found that they were correcting for displacements by shifting their orientation from the northeast at the capture site to the northwest after the displacement. This new direction would lead them to their expected breeding areas. Our results suggest that Eurasian reed warblers are able to determine longitude and perform bicoordinate navigation. This finding is surprising and presents a new intellectual challenge to bird migration researchers, namely, which cues enable birds to determine their east-west position.


Assuntos
Migração Animal/fisiologia , Passeriformes/fisiologia , Animais , Demografia , Geografia , Magnetismo , Orientação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...