Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7: 42083, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176842

RESUMO

The East Asian summer monsoon controls the climatic regime of an extended region through temperature and precipitation changes. As the East Asian summer monsoon is primarily driven by the northern hemisphere summer insolation, such meteorological variables are expected to significantly change on the orbital timescale, influencing the composition of terrestrial sediments in terms of both mineralogy and geochemistry. Here we present clay mineralogy and major element composition of Core MD12-3432 retrieved from the northern South China Sea, and we investigate their relationship with the East Asian summer monsoon evolution over the last 400 ka. The variability of smectite/(illite + chlorite) ratio presents a predominant precession periodicity, synchronous with the northern hemisphere summer insolation changes and therefore with that of the East Asian summer monsoon. Variations in K2O/Al2O3 are characterized by eccentricity cycles, increasing during interglacials when the East Asian summer monsoon is enhanced. Based on the knowledge of sediment provenances, we suggest that these two proxies in the South China Sea are linked to the East Asian summer monsoon evolution with different mechanisms, which are (1) contemporaneous chemical weathering intensity in Luzon for smectite/(illite + chlorite) ratio and (2) river denudation intensity for K2O/Al2O3 ratio of bulk sediment.

2.
Science ; 343(6175): 1129-32, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24557839

RESUMO

Deep ocean circulation has been considered relatively stable during interglacial periods, yet little is known about its behavior on submillennial time scales. Using a subcentennially resolved epibenthic foraminiferal δ(13)C record, we show that the influence of North Atlantic Deep Water (NADW) was strong at the onset of the last interglacial period and was then interrupted by several prominent centennial-scale reductions. These NADW transients occurred during periods of increased ice rafting and southward expansions of polar water influence, suggesting that a buoyancy threshold for convective instability was triggered by freshwater and circum-Arctic cryosphere changes. The deep Atlantic chemical changes were similar in magnitude to those associated with glaciations, implying that the canonical view of a relatively stable interglacial circulation may not hold for conditions warmer and fresher than at present.


Assuntos
Aquecimento Global , Camada de Gelo , Água do Mar/química , Oceano Atlântico
3.
Science ; 319(5859): 60-4, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-18063758

RESUMO

An outstanding climate anomaly 8200 years before the present (B.P.) in the North Atlantic is commonly postulated to be the result of weakened overturning circulation triggered by a freshwater outburst. New stable isotopic and sedimentological records from a northwest Atlantic sediment core reveal that the most prominent Holocene anomaly in bottom-water chemistry and flow speed in the deep limb of the Atlantic overturning circulation begins at approximately 8.38 thousand years B.P., coeval with the catastrophic drainage of Lake Agassiz. The influence of Lower North Atlantic Deep Water was strongly reduced at our site for approximately 100 years after the outburst, confirming the ocean's sensitivity to freshwater forcing. The similarities between the timing and duration of the pronounced deep circulation changes and regional climate anomalies support a causal link.

4.
Science ; 316(5821): 66-9, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17412948

RESUMO

The circulation of the deep Atlantic Ocean during the height of the last ice age appears to have been quite different from today. We review observations implying that Atlantic meridional overturning circulation during the Last Glacial Maximum was neither extremely sluggish nor an enhanced version of present-day circulation. The distribution of the decay products of uranium in sediments is consistent with a residence time for deep waters in the Atlantic only slightly greater than today. However, evidence from multiple water-mass tracers supports a different distribution of deep-water properties, including density, which is dynamically linked to circulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...