Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Immunol ; 23(2): 90-105, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35637393

RESUMO

Great strides have been made in recent years towards understanding the roles of natural killer (NK) cells in immunity to tumours and viruses. NK cells are cytotoxic innate lymphoid cells that produce inflammatory cytokines and chemokines. By lysing transformed or infected cells, they limit tumour growth and viral infections. Whereas T cells recognize peptides presented by MHC molecules, NK cells display receptors that recognize stress-induced autologous proteins on cancer cells. At the same time, their functional activity is inhibited by MHC molecules displayed on such cells. The enormous potential of NK cells for immunotherapy for cancer is illustrated by their broad recognition of stressed cells regardless of neoantigen presentation, and enhanced activity against tumours that have lost expression of MHC class I owing to acquired resistance mechanisms. As a result, many efforts are under way to mobilize endogenous NK cells with therapeutics, or to provide populations of ex vivo-expanded NK cells as a cellular therapy, in some cases by equipping the NK cells with chimeric antigen receptors. Here we consider the key features that underlie why NK cells are emerging as important new additions to the cancer therapeutic arsenal.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Células Matadoras Naturais , Neoplasias/terapia , Linfócitos T , Imunoterapia
2.
Elife ; 112022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35617021

RESUMO

Mitotically stable random monoallelic gene expression (RME) is documented for a small percentage of autosomal genes. We developed an in vivo genetic model to study the role of enhancers in RME using high-resolution single-cell analysis of natural killer (NK) cell receptor gene expression and enhancer deletions in the mouse germline. Enhancers of the RME NK receptor genes were accessible and enriched in H3K27ac on silent and active alleles alike in cells sorted according to allelic expression status, suggesting enhancer activation and gene expression status can be decoupled. In genes with multiple enhancers, enhancer deletion reduced gene expression frequency, in one instance converting the universally expressed gene encoding NKG2D into an RME gene, recapitulating all aspects of natural RME including mitotic stability of both the active and silent states. The results support the binary model of enhancer action, and suggest that RME is a consequence of general properties of gene regulation by enhancers rather than an RME-specific epigenetic program. Therefore, many and perhaps all genes may be subject to some degree of RME. Surprisingly, this was borne out by analysis of several genes that define different major hematopoietic lineages, that were previously thought to be universally expressed within those lineages: the genes encoding NKG2D, CD45, CD8α, and Thy-1. We propose that intrinsically probabilistic gene allele regulation is a general property of enhancer-controlled gene expression, with previously documented RME representing an extreme on a broad continuum.


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK , Sequências Reguladoras de Ácido Nucleico , Alelos , Animais , Cromossomos , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Camundongos
3.
Elife ; 72018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30362940

RESUMO

An essential step for understanding the transcriptional circuits that control development and physiology is the global identification and characterization of regulatory elements. Here, we present the first map of regulatory elements across the development and ageing of an animal, identifying 42,245 elements accessible in at least one Caenorhabditis elegans stage. Based on nuclear transcription profiles, we define 15,714 protein-coding promoters and 19,231 putative enhancers, and find that both types of element can drive orientation-independent transcription. Additionally, more than 1000 promoters produce transcripts antisense to protein coding genes, suggesting involvement in a widespread regulatory mechanism. We find that the accessibility of most elements changes during development and/or ageing and that patterns of accessibility change are linked to specific developmental or physiological processes. The map and characterization of regulatory elements across C. elegans life provides a platform for understanding how transcription controls development and ageing.


Assuntos
Envelhecimento/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Animais , Caenorhabditis elegans/genética , DNA/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Código das Histonas , Histonas/metabolismo , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
4.
J Immunol ; 197(10): 4127-4136, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798146

RESUMO

Many NK cells express inhibitory receptors that bind self-MHC class I (MHC I) molecules and prevent killing of self-cells, while enabling killing of MHC I-deficient cells. But tolerance also occurs for NK cells that lack inhibitory receptors for self-MHC I, and for all NK cells in MHC I-deficient animals. In both cases, NK cells are unresponsive to MHC I-deficient cells and hyporesponsive when stimulated through activating receptors, suggesting that hyporesponsiveness is responsible for self-tolerance. We generated irradiation chimeras, or carried out adoptive transfers, with wild-type (WT) and/or MHC I-deficient hematopoietic cells in WT or MHC I-deficient C57BL/6 host mice. Unexpectedly, in WT hosts, donor MHC I-deficient hematopoietic cells failed to induce hyporesponsiveness to activating receptor stimulation, but did induce tolerance to MHC I-deficient grafts. Therefore, these two properties of NK cells are separable. Both tolerance and hyporesponsiveness occurred when the host was MHC I deficient. Interestingly, infections of mice or exposure to inflammatory cytokines reversed the tolerance of NK cells that was induced by MHC I-deficient hematopoietic cells, but not the tolerance induced by MHC I-deficient nonhematopoietic cells. These data have implications for successful bone marrow transplantation, and suggest that tolerance induced by hematopoietic cells versus nonhematopoietic cells may be imposed by distinct mechanisms.


Assuntos
Tolerância Imunológica , Células Matadoras Naturais/imunologia , Tolerância a Antígenos Próprios , Transferência Adotiva , Animais , Transplante de Medula Óssea , Citocinas , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/classificação , Células Matadoras Naturais/fisiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Quimera por Radiação
5.
Dev Dyn ; 243(1): 159-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24115648

RESUMO

BACKGROUND: Reproduction in animals requires development of distinct neurons in each sex. In C. elegans, most ventral cord neurons (VCNs) are present in both sexes, with the exception of six hermaphrodite-specific neurons (VCs) and nine pairs of male-specific neurons (CAs and CPs) that arise from analogous precursor cells. How are the activities of sexual regulators and mediators of neuronal survival, division, and fate coordinated to generate sex-specificity in VCNs? RESULTS: To address this, we have developed a toolkit of VCN markers that allows us to examine sex-specific neurogenesis, asymmetric fates of daughters of a neuroblast division, and regional specification on the anteroposterior axis. Here, we describe the roles of the Hox transcription factors LIN-39 and MAB-5 in promoting survival, differentiation, and regionalization of VCNs. We also find that the TALE class homeodomain proteins CEH-20 and UNC-62 contribute to specification of neurotransmitter fate in males. Furthermore, we identify that VCN sex is determined during the L1 larval stage. CONCLUSIONS: These findings, combined with future analyses made possible by the suite of VCN markers described here, will elucidate how Hox-mediated cell fate decisions and sex determination intersect to influence development of neuronal sex differences.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas de Caenorhabditis elegans/genética , Feminino , Proteínas de Homeodomínio/genética , Masculino , Fatores de Transcrição/genética
6.
Epilepsia ; 54(9): 1524-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24010576

RESUMO

This review examines the planning, development, and course of the first established colony for epilepsy in the United States-The Ohio Hospital for Epileptics. The events leading to the development of the colony, its early course, and the people who were instrumental in its establishment and maintenance are reviewed. At approximately the same time as the development of the Ohio Hospital for Epileptics, eugenics was gaining momentum in America, which affected epilepsy deeply. How this movement influenced thinking and practice at the Ohio Hospital is also reviewed.


Assuntos
Epilepsia/história , Hospitais/história , Epilepsia/etiologia , Epilepsia/genética , Epilepsia/terapia , História do Século XIX , História do Século XX , Humanos , Ohio , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...