Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 17(10): e202301452, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38224562

RESUMO

Control over product selectivity of the electrocatalytic CO2 reduction reaction (CO2RR) is a crucial challenge for the sustainable production of carbon-based chemical feedstocks. In this regard, single-atom catalysts (SACs) are promising materials due to their tunable coordination environments, which could enable tailored catalytic activities and selectivities, as well as new insights into structure-activity relationships. However, direct evidence for selectivity control via systematic tuning of the SAC coordination environment is scarce. In this work, we have synthesized two differently coordinated Bi SACs anchored to the same host material (carbon black) and characterized their CO2RR activities and selectivities. We find that oxophilic, oxygen-coordinated Bi atoms produce HCOOH, while nitrogen-coordinated Bi atoms generate CO. Importantly, use of the same support material assured that alternation of the coordination environment is the dominant factor for controlling the CO2RR product selectivity. Overall, this work demonstrates the structure-activity relationship of Bi SACs, which can be utilized to establish control over CO2RR product distributions, and highlights the promise for engineering atomic coordination environments of SACs to tune reaction pathways.

2.
ACS Appl Mater Interfaces ; 13(3): 4340-4351, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33455157

RESUMO

We demonstrate the formation of Ta2O5 nanodimple arrays on technologically relevant non-native substrates through a simple anodization and annealing process. The anodizing voltage determines the pore diameter (25-60 nm), pore depth (2-9 nm), and rate of anodization (1-2 nm/s of Ta consumed). The formation of Ta dimples after delamination of Ta2O5 nanotubes occurs within a range of voltages from 7 to 40 V. The conversion of dimples from Ta into Ta2O5 changes the morphology of the nanodimples but does not impact dimple ordering. Electron energy loss spectroscopy indicated an electronic band gap of 4.5 eV and a bulk plasmon band with a maximum of 21.5 eV. Gold nanoparticles (Au NPs) were coated on Ta2O5 nanodimple arrays by annealing sputtered Au thin films on Ta nanodimple arrays to simultaneously form Au NPs and convert Ta to Ta2O5. Au NPs produced this way showed a localized surface plasmon resonance maximum at 2.08 eV, red-shifted by ∼0.3 eV from the value in air or on SiO2 substrates. Lumerical simulations suggest a partial embedding of the Au NPs to explain this magnitude of the red shift. The resulting plasmonic heterojunctions exhibited a significantly higher ensemble-averaged local field enhancement than Au NPs on quartz substrates and demonstrated much higher catalytic activity for the plasmon-driven photo-oxidation of p-aminothiophenol to p,p'-dimercaptoazobenzene.

3.
Nanoscale Adv ; 1(8): 2881-2890, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36133583

RESUMO

We report successful synthesis of low band gap inorganic polyphosphide and TiO2 heterostructures with the aid of short-way transport reactions. Binary and ternary polyphosphides (NaP7, SnIP, and (CuI)3P12) were successfully reacted and deposited into electrochemically fabricated TiO2 nanotubes. Employing vapor phase reaction deposition, the cavities of 100 µm long TiO2 nanotubes were infiltrated; approximately 50% of the nanotube arrays were estimated to be infiltrated in the case of NaP7. Intensive characterization of the hybrid materials with techniques including SEM, FIB, HR-TEM, Raman spectroscopy, XRD, and XPS proved the successful vapor phase deposition and synthesis of the substances on and inside the nanotubes. The polyphosphide@TiO2 hybrids exhibited superior water splitting performance compared to pristine materials and were found to be more active at higher wavelengths. SnIP@TiO2 emerged to be the most active among the polyphosphide@TiO2 materials. The improved photocatalytic performance might be due to Fermi level re-alignment and a lower charge transfer resistance which facilitated better charge separation from inorganic phosphides to TiO2.

4.
Nanotechnology ; 30(20): 204003, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-30524004

RESUMO

Anodically formed TiO2 nanotube arrays (TNTAs) constitute an optoelectronic platform that is being studied for use as a photoanode in photoelectrocatalytic cells, as an electron transport layer (ETL) in solar cells and photodetectors, and as an active layer for chemiresistive and microwave sensors. For optimal transport of charge carriers in these one-dimensional polycrystalline ordered structures, it is desirable to introduce a preferential texture with the grains constituting the nanotube walls aligned along the transport direction. Through x-ray diffraction analysis, we demonstrate that choosing the right water content in the anodization electrolyte and the use of a post-anodization zinc ion treatment can introduce a preferential texture in sub-micron length transparent TNTAs formed on non-native substrates. The incorporation of 1.5 atom% of Zn in TiO2 nanotubes prior to annealing, was found to consistently result in the strongest preferential orientation along the [001] direction. [001] oriented TNTAs exhibited a responsivity of 523 A W-1 at a bias of 2 V for 365 nm photons, which is among the highest reported performance values for ultraviolet photodetection using titania nanotubes. Furthermore, the textured nanotubes without a Zn2+ treatment showed a significantly enhanced performance in halide perovskite solar cells that used TNTAs as the ETL.

5.
Nanotechnology ; 29(1): 014002, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29099386

RESUMO

Anodically formed, vertically oriented, self-organized cylindrical TiO2 nanotube arrays composed of the anatase phase undergo an interesting morphological and phase transition upon flame annealing to square-shaped nanotubes composed of both anatase and rutile phases. This is the first report on heterojunctions consisting of metal nanoparticles (NPs) deposited on square-shaped TiO2 nanotube arrays (STNAs) with mixed rutile and anatase phase content. A simple photochemical deposition process was used to form Cu, CuPt, and Pt NPs on the STNAs, and an enhancement in the visible light photoelectrochemical water splitting performance for the NP-decorated STNAs was observed over the bare STNAs. Under narrow band illumination by visible photons at 410 nm and 505 nm, Cu NP-decorated STNAs performed the best, producing photocurrents 80% higher and 50 times higher than bare STNAs, respectively. Probing the energy level structure at the NP-STNA interface using ultraviolet photoelectron spectroscopy revealed Schottky barrier formation in the NP-decorated STNAs, which assists in separating the photogenerated charge carriers, as also confirmed by longer charge carrier lifetimes in NP-decorated STNAs. While all the NP-decorated STNAs showed enhanced visible light absorption compared to the bare STNAs, only the Cu NPs exhibited a clear plasmonic behavior with an extinction cross section that peaked at 550 nm.

6.
Nanotechnology ; 28(37): 374001, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28675755

RESUMO

Nanofabricated optically anisotropic uniaxial thin films with deep submicron feature sizes are emerging as potential platforms for low-loss all-dielectric metamaterials, and for Dyakonov surface wave-based subwavelength optical confinement and guiding at interfaces with isotropic media. In this context, we investigate the optical properties of one such uniaxial platform, namely self-organized titania nanotube arrays (TNTAs) grown by the bottom-up nanofabrication process of electrochemical anodization on silicon wafer substrates, and subsequently annealed at different temperatures, i.e. 500 °C and 750 °C. We performed detailed quantitative analysis of the structure of the TNTAs using x-ray diffraction and Raman spectroscopy, which revealed a measurable phonon confinement in TNTAs annealed at 500 °C. Variable angle spectroscopic ellipsometry was used to investigate the optical anisotropy in two kinds of TNTAs-those constituted by anatase-phase and those containing a mixture of anatase and rutile phases. Both kinds of TNTAs were found to have positive birefringence (Δn) exceeding 0.06 in the spectral region of interest while mixed phase TNTAs exhibited Δn as high as 0.15. The experimentally measured anisotropy in the refractive index of the TNTAs was compared with the predictions of two different effective medium approximations incorporating the uniaxial geometry. The measured value of Δn for TNTAs exceeded that of bulk anatase single crystals, indicating the potential of nanostructured dielectrics to outperform dielectric crystals of the same material with respect to the magnitude of the achievable directional refractive index contrast.

7.
Nanomaterials (Basel) ; 7(5)2017 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-28468280

RESUMO

The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells.

8.
Nanotechnology ; 28(27): 274001, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28557807

RESUMO

This is the first report of a 17.6% champion efficiency solar cell architecture comprising monocrystalline TiO2 nanorods (TNRs) coupled with perovskite, and formed using facile solution processing without non-routine surface conditioning. Vertically oriented TNR ensembles are desirable as electron transporting layers (ETLs) in halide perovskite solar cells (HPSCs) because of potential advantages such as vectorial electron percolation pathways to balance the longer hole diffusion lengths in certain halide perovskite semiconductors, ease of incorporating nanophotonic enhancements, and optimization between a high contact surface area for charge transfer (good) versus high interfacial recombination (bad). These advantages arise from the tunable morphology of hydrothermally grown rutile TNRs, which is a strong function of the growth conditions. Fluorescence lifetime imaging microscopy of the HPSCs demonstrated a stronger quenching of the perovskite PL when using TNRs as compared to mesoporous/compact TiO2 thin films. Due to increased interfacial contact area between the ETL and perovskite with easier pore filling, charge separation efficiency is dramatically enhanced. Additionally, solid-state impedance spectroscopy results strongly suggested the suppression of interfacial charge recombination between TNRs and perovskite layer, compared to other ETLs. The optimal ETL morphology in this study was found to consist of an array of TNRs ∼300 nm in length and ∼40 nm in width. This work highlights the potential of TNR ETLs to achieve high performance solution-processed HPSCs.

9.
Polymers (Basel) ; 9(2)2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30970717

RESUMO

Bulk heterojunction solar cells based on blends of quantum dots and conjugated polymers are a promising configuration for obtaining high-efficiency, cheaply fabricated solution-processed photovoltaic devices. Such devices are of significant interest as they have the potential to leverage the advantages of both types of materials, such as the high mobility, band gap tunability and possibility of multiple exciton generation in quantum dots together with the high mechanical flexibility and large molar extinction coefficient of conjugated polymers. Despite these advantages, the power conversion efficiency (PCE) of these hybrid devices has remained relatively low at around 6%, well behind that of all-organic or all-inorganic solar cells. This is attributed to major challenges that still need to be overcome before conjugated polymer⁻quantum dot blends can be considered viable for commercial application, such as controlling the film morphology and interfacial structure to ensure efficient charge transfer and charge transport. In this work, we present our findings with respect to the recent development of bulk heterojunctions made from conjugated polymer⁻quantum dot blends, list the ongoing strategies being attempted to improve performance, and highlight the key areas of research that need to be pursued to further develop this technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...