Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37759649

RESUMO

Living bodies comprise approximately 55-75% water to maintain homeostasis. However, little is known about the comprehensive differences in in vivo water molecule dynamics (water structure dynamics; WSD) between physiological and pathophysiological statuses. Here, we examined the WSD of ex vivo tumor tissues and organs from tumor-bearing mice with engrafted mouse malignant melanoma cells (B16-F10) in the right flanks to compare with those in healthy mice, using time domain reflectometry of dielectric spectroscopy at days 9, 11, and 14 after engrafting. The relaxation parameters of relaxation time (τ), relaxation time distribution parameter (ß), and relaxation strength (∆ε) were measured on tumor tissues and lung, liver, kidney, and skin tissues. Immediately afterward, the water contents (%) in the tumor and the other organs were calculated by measuring their weights before and after freeze-drying. Each parameter of the tumor was compared to that of pooled values of other organs in tumor-bearing (TO) and healthy mice (HO). The tumor water content temporarily increased compared to that of HO at day 11; the tumor volume was also prone to increase. In contrast, tumor tissues exhibited significantly higher values of ß close to 1 of ultrapure water and ∆ε compared to TO and HO at all times. Moreover, ß in the viscera of TO was prone to increase compared to that of HO with significantly higher levels at day 11. Conclusively, tumor-bearing mice exhibited systemically aberrant WSD, unlike healthy mice. Thus, dielectric spectroscopy in terms of WSD may provide novel pathophysiological perspectives in tumor-bearing living bodies.

2.
Phys Chem Chem Phys ; 25(33): 22223-22231, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37566434

RESUMO

A broadband dielectric spectroscopy study was conducted on a partially crystallized 10 wt% poly(N-isopropylacrylamide) [PNIPAM] microgel aqueous suspension to investigate the dielectric relaxation of ice in microgel suspensions. The measurements covered a frequency range of 10 mHz to 10 MHz and at temperatures ranging from 123 K to 273 K. Two distinct relaxation processes were observed at specific frequencies below the melting temperature. One is associated with the combination of the local chain motion of PNIPAM and interfacial polarization in the uncrystallized phase, while another is associated with ice. To understand the temperature-dependent behaviour of the ice relaxation process, the relaxation time of ice was compared with those observed in other frozen polymer water mixtures, including gelatin, poly-vinylpyrrolidone (PVP), and bovine serum albumin (BSA). For concentrations ≥ 10 wt%, the temperature dependence of the relaxation time of ice was found to be independent. Therefore, the study primarily focused on the 10 wt% data for easier comprehension of the ice relaxation process. It was found that the microgel and globular protein BSA had no significant effect on ice crystallization, while gelatin slowed down the crystallization process, and PVP accelerated it. To discuss the mechanism of the dielectric relaxation of ice, the trap-controlled proton transport model developed by Khamzin et al. [Chem. Phys., 2021, 541, 111040.] was employed. The model was used to discuss the dynamic heterogeneity of ice observed in this investigation, distinguishing it from the spatial heterogeneity of ice commonly discussed.

3.
Gels ; 9(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504385

RESUMO

So far, it has been difficult to directly compare diverse characteristic gelation mechanisms over different length and time scales. This paper presents a universal water structure analysis of several gels with different structures and gelation mechanisms including polymer gels, supramolecular gels composed of surfactant micelles, and cement gels. The spatial distribution of water molecules was analyzed at molecular level from a diagram of the relaxation times and their distribution parameters (τ-ß diagrams) with our database of the 10 GHz process for a variety of aqueous systems. Polymer gels with volume phase transition showed a small decrease in the fractal dimension of the hydrogen bond network (HBN) with gelation. In supramolecular gels with rod micelle precursor with amphipathic molecules, both the elongation of the micelles and their cross-linking caused a reduction in the fractal dimension. Such a reduction was also found in cement gels. These results suggest that the HBN inevitably breaks at each length scale with relative increase in steric hindrance due to cross-linking, resulting in the fragmentation of collective structures of water molecules. The universal analysis using τ-ß diagrams presented here has broad applicability as a method to characterize diverse gel structures and evaluate gelation processes.

4.
Gels ; 9(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37233000

RESUMO

There are various types of gel materials used in a wide range of fields, and their gelation mechanisms are extremely diverse. Furthermore, in the case of hydrogels, there exist some difficulties in understanding complicated molecular mechanisms especially with water molecules interacting through hydrogen bonding as solvents. In the present work, the molecular mechanism of the structural formation of fibrous super-molecular gel by the low molecular weight gelator, N-oleyl lactobionamide/water mixture was elucidated using the broadband dielectric spectroscopy (BDS) method. The dynamic behaviors observed for the solute and water molecules indicated hierarchical structure formation processes in various time scales. The relaxation curves obtained at various temperatures in the cooling and heating processes showed relaxation processes respectively reflecting the dynamic behaviors of water molecules in the 10 GHz frequency region, solute molecules interacting with water in MHz region, and ion-reflecting structures of the sample and electrode in kHz region. These relaxation processes, characterized by the relaxation parameters, showed remarkable changes around the sol-gel transition temperature, 37.8 °C, determined by the falling ball method and over the temperature range, around 53 °C. The latter change suggested a structure formation of rod micelles appearing as precursors before cross-linking into the three-dimensional network of the supramolecular gels. These results clearly demonstrate how effective relaxation parameter analysis is for understanding the gelation mechanism in detail.

5.
Gels ; 10(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38247743

RESUMO

High-performance properties of interpenetration polymer network (IPN) hydrogels, based on physically crosslinked chitosan (CS) and chemically crosslinked poly(N-isopropylacrylamide) (PNiPAM), were successfully developed. The IPN of CS/PNiPAM is proposed to overcome the limited mechanical properties of the single CS network. In this study, the viscoelastic behaviors of prepared materials in both solution and gel states were extensively examined, considering the UV exposure time and crosslinker concentration as key factors. The effect of these factors on gel formation, hydrogel structures, thermal stabilities of networks, and HeLa cell adhesion were studied sequentially. The sol-gel transition was effectively demonstrated through the scaling law, which agrees well with Winter and Chambon's theory. By subjecting the CS hydrogel to the process operation in an ethanol solution, its properties can be significantly enhanced with increased crosslinker concentration, including the shear modulus, crosslinking degree, gel strength, and thermal stability in its swollen state. The IPN samples exhibit a smooth and dense surface with irregular pores, allowing for much water absorption. The HeLa cells were adhered to and killed using the CS surface cationic charges and then released through hydrolysis by utilizing the hydrophilic/hydrophobic switchable property or thermo-reversible gelation of the PNiPAM network. The results demonstrated that IPN is a highly attractive candidate for anti-fouling materials.

6.
Phys Chem Chem Phys ; 24(10): 5803-5812, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35213680

RESUMO

To investigate the dielectric relaxations of ice in low-concentration protein-water mixtures, broadband dielectric spectroscopy measurements were performed on partially crystallized bovine serum albumin (BSA)-water mixtures with BSA concentrations of 1-10 wt% at temperatures in the range of 123-298 K. The temperature dependence of the relaxation time of ice observed in all these mixtures changes twice at TC1 (∼240 K) and TC2 (200-160 K) (TC1 > TC2), i.e., at which the apparent activation energy, Ea, changes. Below 200 K, the relaxation of ice separates as 3-4 relaxations with different TC2 and Ea values. The presence of the multiple ice relaxations is the same as that observed for the gelatin-water mixtures (T. Yasuda, K. Sasaki, R. Kita, N. Shinyashiki and S. Yagihara, J. Phys. Chem. B, 2017, 121, 2896), but the concentration dependences of TC1 and TC2 are different. The relaxation interpreted to be due to uncrystallized water in 20 wt% and 40 wt% BSA-water mixtures reported (N. Shinyashiki, W. Yamamoto, A. Yokoyama, T. Yoshinari, S. Yagihara, R. Kita, K. L. Ngai and S. Capaccioli, J. Phys. Chem. B, 2009, 113, 14448) was re-examined and concluded to be due to one of the multiple relaxations of ice.


Assuntos
Soroalbumina Bovina , Água , Gelatina , Gelo , Soroalbumina Bovina/química , Temperatura , Água/química
7.
Sci Rep ; 10(1): 12587, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724055

RESUMO

A novel polymer host from carboxymethyl cellulose (CMC)/poly(N-isopropylacrylamide) (PNiPAM) was developed for a high safety solid polymer electrolyte (SPE) in a zinc ion battery. Effects of the PNiPAM loading level in the range of 0-40% by weight ( wt%) on the chemical, mechanical, thermal, and morphological properties of the CMC/PNiPAMx films (where x is the wt% of PNiPAM) were symmetrically investigated. The obtained CMC/PNiPAMx films showed a high compatibility between the polymers. The CMC/PNiPAM20 blend showed the greatest tensile strength and modulus at 37.9 MPa and 2.1 GPa, respectively. Moreover, the thermal degradation of CMC was retarded by the addition of PNiPAM. Scanning electron microscopy images of CMC/PNiPAM20 revealed a porous structure that likely supported Zn2+ movement in the SPEs containing zinc triflate, resulting in the high Zn2+ ion transference number (0.56) and ionic conductivity (1.68 × 10-4 S cm-1). Interestingly, the presence of PNiPAM in the CMC/PNiPAMx blends showed a greater stability during charge-discharge cyclic tests, indicating the ability of PNiPAM to suppress dendrite formation from causing a short circuit. The developed CMC/PNiPAM20 based SPE is a promising material for high ionic conductivity and stability in a Zn ion battery.

8.
J Phys Chem B ; 124(8): 1521-1530, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32009404

RESUMO

In this study, we investigated the cooperative molecular dynamics of poly(vinylpyrrolidone) (PVP), ice, and uncrystallized water (UCW) in partially crystallized PVP-water mixtures by means of broadband dielectric spectroscopy. Three relaxation processes, denoted I, II, and III, were observed at temperatures ranging from immediately below the crystallization temperature (Tc) to approximately 200 K. At temperatures of 173-193 K, processes I and II cannot be distinguished. Below 168 K, process II separates into two processes: process IV at higher frequencies and process V at lower frequencies. Process I contributes to process V. In partially crystallized mixtures, process I originates from UCW in an uncrystallized phase with PVP. Process II is attributed to ice in the mixture, with a relaxation time that is 2 orders of magnitude smaller than that of pure ice. The concentration dependence of the strength of process II and the relaxation time relative to that of ice in bovine serum albumin (BSA)-water and gelatin-water mixtures strongly support this conclusion. Observation of processes IV and V indicates the presence of multiple ice relaxation processes. Process III is attributed to the α process of PVP in the uncrystallized phase in 40 and 50 wt % PVP mixtures. For mixtures with 30 wt % PVP or less, process III is attributed not only to the α process of PVP but also to interfacial polarization.

9.
Skin Res Technol ; 26(2): 255-262, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31556189

RESUMO

BACKGROUND: The dynamic behavior of water molecules remains an important subject for understanding human skin. The change in the dynamics of water molecules from those in bulk water can be effectively observed by dielectric spectroscopy. To study water in the human skin in vivo, non-invasive and non-destructive measurements are essential. Since many unknowns remain from previous research, in this report we employ a two-layer dielectric model to evaluate the penetration depth of the electric field and use the results in measurements on human skin. MATERIALS AND METHODS: We used open-ended coaxial probes with different diameters to perform time-domain reflectometry (TDR) measurements for an acetone-Teflon double-layer model and for human skin from various parts of the body. RESULTS: The electric-field penetration depth obtained from model measurements increases with the increasing outer diameter of open-ended coaxial electrodes. For skin measurements, the relaxation strength corresponding to the water content shows a clear dependence on the epidermal thickness of the measured body parts. CONCLUSION: We determined the depth distribution of the water content of skin from results of dielectric measurements obtained using electrodes with various electric-field penetration depths. We found exponential decays with the thickness of the epidermis of each body part for several examinees. This study suggests an effective method for detailed evaluations of human skin.


Assuntos
Espectroscopia Dielétrica/instrumentação , Espectroscopia Dielétrica/métodos , Pele/química , Adulto , Água Corporal/química , Eletrodos , Desenho de Equipamento , Feminino , Humanos , Masculino , Fenômenos Fisiológicos da Pele , Adulto Jovem
10.
Sensors (Basel) ; 19(11)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181722

RESUMO

The dynamics of a hydrogen bonding network (HBN) relating to macroscopic properties of hydrogen bonding liquids were observed as a significant relaxation process by dielectric spectroscopy measurements. In the cases of water and water rich mixtures including biological systems, a GHz frequency relaxation process appearing at around 20 GHz with the relaxation time of 8.2 ps is generally observed at 25 °C. The GHz frequency process can be explained as a rate process of exchanges in hydrogen bond (HB) and the rate becomes higher with increasing HB density. In the present work, this study analyzed the GHz frequency process observed by suitable open-ended coaxial electrodes, and physical meanings of the fractal nature of water structures were clarified in various aqueous systems. Dynamic behaviors of HBN were characterized by a combination of the average relaxation time and the distribution of the relaxation time. This fractal analysis offered an available approach to both solution and dispersion systems with characterization of the aggregation or dispersion state of water molecules. In the case of polymer-water mixtures, the HBN and polymer networks penetrate each other, however, the HBN were segmented and isolated more by dispersed and aggregated particles in the case of dispersion systems. These HBN fragments were characterized by smaller values of the fractal dimension obtained from the fractal analysis. Some examples of actual usages suggest that the fractal analysis is now one of the most effective tools to understand the molecular mechanism of HBN in aqueous complex materials including biological systems.


Assuntos
Eletrodos , Água/química , Espectroscopia Dielétrica
11.
Langmuir ; 34(9): 3003-3009, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29412671

RESUMO

Cloud points of poly( N-isopropylacrylamide) in aqueous mixed solvents, with methanol as the cosolvent, are experimentally measured for polymer concentrations varied up to as high as the weight fraction 0.25. They are shown to form closed loops on the ternary phase plane in the temperature region between 5 and 30 °C, and hence co-nonsolvency is complete. Miscibility loops shrink by cooling, or equivalently, they exhibit lower critical solution temperature behavior. For a fixed polymer concentration, there is a composition of the mixed solvent at which the cloud-point temperature takes the lowest value. This minimum cloud-point temperature composition of the mixed solvent turned out to be almost independent of the polymer concentration, at least within the measured dilute region below the weight fraction 0.25. On the basis of the assumption that the phase separation is closely related to the preferential adsorption of the solvents by hydrogen bonding, we employ a model solution of Flory-Huggins type, augmented with direct and cooperative polymer-solvent hydrogen bonds, to construct the ternary phase diagrams. Theoretical calculation of the spinodal curves is performed, and the results are compared with the obtained experimental cloud-point data. The effect of molecular volume of the cosolvent is also studied within the same theoretical framework. Possibility for a upper critical solution temperature co-nonsolvency to appear for cosolvents with larger molecular volume is discussed.

12.
Gels ; 4(3)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-30674832

RESUMO

Dynamics of solvent molecules restricted in poly (acryl amide) gels immersed in solvent mixtures of acetone⁻, 1,4-dioxane⁻, and dimethyl sulfoxide⁻water were analyzed by the time domain reflectometry method of dielectric spectroscopy and the pulse field gradient method of nuclear magnetic resonance. Restrictions of dynamic behaviors of solvent molecules were evaluated from relaxation parameters such as the relaxation time, its distribution parameter, and the relaxation strength obtained by dielectric measurements, and similar behaviors with polymer concentration dependences for the solutions were obtained except for the high polymer concentration in collapsed gels. Scaling analyses for the relaxation time and diffusion coefficient respectively normalized by those for bulk solvent suggested that the scaling exponent determined from the scaling variable defined as a ratio of the size of solvent molecule to mesh size of polymer networks were three and unity, respectively, except for collapsed gels. The difference in these components reflects characteristic molecular interactions in the rotational and translational diffusions, and offered a physical picture of the restriction of solvent dynamics. A universal treatment of slow dynamics due to the restriction from polymer chains suggests a new methodology of characterization of water structures.

13.
Langmuir ; 33(34): 8483-8492, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28780866

RESUMO

Temperature gradient-induced migration of biomolecules, known as thermophoresis or thermodiffusion, changes upon ligand binding. In recent years, this effect has been used to determine protein-ligand binding constants. The mechanism through which thermodiffusive properties change when complexes are formed, however, is not understood. An important contribution to thermodiffusive properties originates from the thermal response of hydrogen bonds. Because there is a considerable difference between the degree of solvation of the protein-ligand complex and its isolated components, ligand-binding is accompanied by a significant change in hydration. The aim of the present work is therefore to investigate the role played by hydrogen bonding on the change in thermodiffusive behavior upon ligand-binding. As a model system, we use cyclodextrins (CDs) and acetylsalicylic acid (ASA), where quite a significant change in hydration is expected and where no conformational changes occur when a CD/ASA complex is formed in aqueous solution. Thermophoresis was investigated in the temperature range of 10-50 °C by infrared thermal diffusion forced Rayleigh scattering. Nuclear magnetic resonance measurements were performed at 25 °C to obtain information about the structure of the complexes. All CD/ASA complexes show a stronger affinity toward regions of lower temperature compared to the free CDs. We found that the temperature sensitivity of thermophoresis correlates with the 1-octanol/water partition coefficient. This observation not only establishes the relation between thermodiffusion and degree of hydrogen bonding but also opens the possibility to relate thermodiffusive properties of complexes to their partition coefficient, which cannot be determined otherwise. This concept is especially interesting for protein-ligand complexes where the protein undergoes a conformational change, different from the CD/ASA complexes, giving rise to additional changes in their hydrophilicity.


Assuntos
Ciclodextrinas/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Temperatura , Difusão Térmica
14.
J Phys Chem B ; 121(13): 2896-2901, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28288513

RESUMO

Broadband dielectric spectroscopy measurements were performed on partially crystallized gelatin-water mixtures with gelatin concentrations of 1-5 wt % for temperatures between 123 and 298 K to study the dynamics of ice. These systems contain only hexagonal ice. Nevertheless, four dielectric relaxation processes of ice were observed. At temperatures below the crystallization temperature, a loss peak was observed, and it separated into four loss peaks at around 225 K. Using the temperature and concentration dependencies of these relaxation processes, we confirmed that these four processes originated from ice. For the relaxation time of ice, τice, the deviation of the temperature dependence of τice from the Arrhenius type is larger for the relaxation process at the higher-frequency side. For the temperature dependence of τice for the dominant process, three temperature ranges with different activation energies, Ea, were investigated. The intermediate-temperature range of τice with the smallest Ea decreased as the gelatin concentration increased; therefore, τice of the dominant process changed from the relaxation process with the smaller τice to that with the larger τice as the gelatin concentration increased. In addition, the relaxation process of ice with larger τice values was found to have larger values of Ea. These results suggest that a higher gel network density affects the temperature dependence of τice.

16.
Carbohydr Polym ; 159: 171-177, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28038746

RESUMO

Self-assembly of acetylated dextran (Ac-DEXs) was investigated with a modified dextran with acetic anhydride in the presence of pyridine. The effect of acetylation degree on solution properties has been investigated by static and dynamic light scattering (DLS). Molecular weight (Mw) and the radius of gyration (Rg) of dextran significantly increased with acetylation degree due to the aggregates formation. However, those aggregates noticeably reduced with further increase of acetylation degree. It suggested that the aggregates have shrinkage. The aggregate formation is clearly confirmed by DLS analysis in the presence of the bimodal relaxation distribution for Ac-DEXs. The hydrodynamic radius (Rh) of fast and slow mode is distinctly corresponded with single dextran macromolecules and aggregates, respectively. The Rh of aggregates varied slightly with increasing acetylation degree. The aggregates of Ac-DEXs represent hard spherical nanoparticles whereas the random coil structure is found in dextran. Formation of gel nanoparticles was monitored at the highest acetylated substitution.

17.
ACS Macro Lett ; 6(1): 21-26, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35632874

RESUMO

Natural polysaccharides represent a renewable resource whose effective utilization is of increasing importance. Chemical modification is a powerful tool to transform them into processable materials but usually sacrifices the original structures and properties of value. Here we introduce a chemical modification of Curdlan, a ß-1,3-glucan, via 4,6-acetalization. This modification has successfully combined a helix-forming ability of Curdlan with new solubility in organic media. Furthermore, it has operationalized efficient cohelical crossovers (CCs) among the helices to demonstrate the formation of an extensive supramolecular network that goes well beyond the nanoscopic regime, allowing for preparation of flexible self-supporting films with macroscopic dimensions. This protocol, which is now viewed as supramolecular polymerization of a helical polysaccharide macromer, can add a new dimension to "polysaccharide nanotechnology", opening a door for the creation of unconventional polymer materials based on the cohelical crossover network (CCN).

18.
J Phys Chem B ; 121(1): 265-272, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27966346

RESUMO

The glass transition of partially crystallized gelatin-water mixtures was investigated using broadband dielectric spectroscopy (BDS) over a wide range of frequencies (10 mHz to 10 MHz), temperatures (113-298 K), and concentrations (10-45 wt %). Three dielectric relaxation processes (processes I, II, and III) were clearly observed. Processes I, II, and III originate from uncrystallized water (UCW) in the hydration shells of gelatin, ice, and hydrated gelatin, respectively. A dynamic crossover, called the Arrhenius to non-Arrhenius transition of UCW, was observed at the glass transition temperature of the relaxation process of hydrated gelatin for all mixtures. The amount of UCW increases with increasing gelatin content. However, above 35 wt % gelatin, the amount of UCW became more dependent on the gelatin concentration. This increase in UCW causes a decrease in the glass transition temperature of the cooperative motion of gelatin and UCW, which appears to result from a change in the aggregation structure of gelatin in the mixture at a gelatin concentration of approximately 35 wt %. The temperature dependence of the relaxation time of process II has nearly the same activation energy as pure ice made by slow crystallization of ice Ih. This implies that process II originates from the dynamics of slowly crystallized ice Ih.


Assuntos
Espectroscopia Dielétrica , Gelatina/química , Gelo , Simulação de Dinâmica Molecular , Água/química , Cristalização
19.
Eur Phys J E Soft Matter ; 39(9): 86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27663869

RESUMO

Cyclodextrins are cyclic oligosaccharides which are interesting as drug delivery systems, because they can be used as containers for pharmaceutical substances. We studied the Ludwig-Soret effect of [Formula: see text]-, [Formula: see text]-, [Formula: see text]- and methyl-[Formula: see text]-cyclodextrin in water and formamide by infrared thermal diffusion forced Rayleigh scattering (IR-TDFRS). In water the Soret coefficient, S T, of [Formula: see text]-, [Formula: see text]- and [Formula: see text]-cyclodextrin increases with increasing temperature and shows a sign change from negative to positive around T = 35 ° C, while S T of methyl-[Formula: see text]-cyclodextrin is positive in the entire investigated temperature. In formamide S T-values of all cyclodextrins coincide and show a slight decrease with temperature. We discuss the obtained results and relate the S T-values to the different hydrogen bonding capabilities of the cyclodextrins and the used solvents. It turns out that the change of S T with temperature correlates with the partition coefficient, logP, which indicates that more hydrophilic substances show a more pronounced temperature sensitivity of S T. Additionally we obtained a surprising result measuring the refractive index contrast factor with temperature, [Formula: see text] of cyclodextrins in formamide, which might be explained by a complex formation between cyclodextrins and formamide.


Assuntos
Ciclodextrinas/química , Difusão , Formamidas/química , Modelos Químicos , Temperatura , Água/química , Coloides/química , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Oligossacarídeos/química , Solventes/química , Eletricidade Estática
20.
J Phys Chem B ; 120(27): 6882-9, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27320337

RESUMO

In this study, broadband dielectric spectroscopy and differential scanning calorimetry (DSC) measurements are performed to study the dynamics of water and polymers in an aqueous solution of poly(vinylpyrrolidone) (PVP) with concentrations of 60, 65, and 70 wt % PVP in a temperature range of 123-298 K. Two distinct relaxation processes, l- and h-processes, which originate from the segmental chain motion of PVP and the primary relaxation process of water, respectively, are observed simultaneously. The relationship between l- and h-processes and their temperature dependences mimic those of the α-process and Johari-Goldstein ß-process, which are observed in ordinal glass formers. The relaxation time of the l-process, τl, obeys the Vogel-Fulcher (VF)-type temperature dependence, and the glass-transition temperature of the l-process, Tg,l, which is defined by the temperature that is reached in a τl of 100-1000 s, shows good agreement with the calorimetric Tg obtained by DSC. The temperature dependence of the relaxation time of the h-process, τh, exhibits a crossover from VF to Arrhenius behavior at the so-called fragile-to-strong transition (FST) of water at Tg,l. The temperature dependence of the relaxation strength of the h-process, Δεh, increases with a decrease in temperature from 298 K to Tg,l. Below Tg,l, Δεh is nearly constant or slightly decreases with decreasing temperature. According to previous studies on aqueous solutions of sugars and alcohols, the Δε of the ν-process, which originates from local motion of water, decreases with decreasing temperature above the Tg of the α-process, which originates from the cooperative motion of the solute and water. Therefore, the l-process in the PVP-water mixture is not a result of the cooperative motion of PVP and water but rather a result of the polymer-polymer cooperative motion of PVP. In addition, agreement among Tg,l, the temperature of the FST of water, and calorimetric Tg suggests that the FST of water occurs at Tg.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...