Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 191: 107994, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113961

RESUMO

Deep-water coral reefs are found worldwide and harbor biodiversity levels that are comparable to their shallow-water counterparts. However, the genetic diversity and population structure of deep-water species remain poorly explored, and historical taxonomical issues still need to be resolved. Here we used microsatellite markers as well as ultraconserved elements (UCE) and exons to shed light on the population structure, genetic diversity, and phylogenetic position of the genus Madrepora, which contains M. oculata, one of the most widespread scleractinian species. Population structure of 107 samples from three Southwestern Atlantic sedimentary basins revealed the occurrence of a cryptic species, herein named M. piresae sp. nov. (authored by Kitahara, Capel and Zilberberg), which can be found in sympatry with M. oculata. Phylogeny reconstructions based on 134 UCEs and exon regions corroborated the population genetic data, with the recovery of two well-supported groups, and reinforced the polyphyly of the family Oculinidae. In order to better accommodate the genus Madrepora, while reducing taxonomical confusion associated with the name Madreporidae, we propose the monogeneric family Bathyporidae fam. nov. (authored by Kitahara, Capel, Zilberberg and Cairns). Our findings advance the knowledge on the widespread deep-water genus Madrepora, resolve a long-standing question regarding the phylogenetic position of the genus, and highlight the need of a worldwide review of the genus.


Assuntos
Antozoários , Água , Animais , Filogenia , Recifes de Corais , Biodiversidade
2.
Mol Phylogenet Evol ; 186: 107867, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348770

RESUMO

A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (less than 38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The "Robust" and "Complex" clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the "Robust" clade, transforming our understanding of the "Basal" clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski & Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani & Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni & Hoeksema to accommodate Pachyseris Milne Edwards & Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution.


Assuntos
Antozoários , Animais , Filogenia , Antozoários/genética , Transcriptoma , Genoma , Núcleo Celular
3.
Mar Biotechnol (NY) ; 25(3): 358-371, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37162622

RESUMO

We used transcriptome sequencing to investigate the hepatic postprandial responses of Rachycentron canadum (cobia), an important commercial fish species. In total, 150 cobia juveniles (50 per tank, triplicate) were fed ad libitum with a commercial diet for 7 days, fasted for 24 h, and fed for 10 min. The liver was sampled 10 min prior to feeding and 30 min, 1, 2, 4, 8, 12, and 24 h after the feeding event. Each sample was evaluated in terms of liver fatty acid profile and gene expression. Differential gene expressions were evaluated, focusing on fatty acid synthesis and oxidation pathways. In general, the liver fatty acid profile reflected diet composition. Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) levels increased at 8 to 12 h but decreased at 24 h after the feeding event. A high number of differentially expressed genes (DEGs) were observed comparing fish that fasted for 8 h with those fasted for 30 min and 24 h, while a reduced number of DEGs was observed comparing individuals who fasted for 30 min compared with those who fasted for 24 h. Similarly, the main differences in the expression of genes related to the fatty acid biosynthesis and oxidation pathways were noticed in individuals who fasted for 8 h compared with those who fasted for 30 min and 24 h. The results suggested that the adequate time to sample the individuals ranged between 8 and 12 h after the meal since, apparently, after 24 h, differential gene expression was not necessarily influenced by food intake.


Assuntos
Ácidos Graxos Ômega-3 , Perciformes , Animais , Metabolismo dos Lipídeos/genética , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos/metabolismo , Ácido Eicosapentaenoico , Perciformes/genética , Perciformes/metabolismo , Peixes/metabolismo , Fígado/metabolismo , RNA/metabolismo
4.
Mar Environ Res ; 188: 105974, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37058776

RESUMO

Fast-growing and reproducing sun corals have successfully invaded rocky reefs around the Atlantic Ocean, markedly reducing the diversity of fouling invertebrates and macroalgae, and profoundly changing the composition of reef-associated mobile invertebrates. Here, we address sun-coral rubble depositions and report, for the first time, the effects of sun corals on near-reef soft-bottom invertebrate assemblages. Abundance, richness and diversity were higher at rubble habitats compared to bare sandy grounds, which could be a positive effect of substrate complexity. All those parameters were also higher at rubble patches dominated by sun-coral fragments compared to rubble patches dominated by pebbles or shell fragments, also suggesting possible additive effects of coral-borne chemical attraction (sun-coral specific, as inputs of other coral species were virtually absent). Different epifaunal groups were exclusive of rubble habitats and a subset of those exclusive of sun-coral rubble, explaining the incremental richness across habitats. The relative abundance of the two dominant groups - polychaetes (p) and amphipods (a) - contributed the most to the observed contrasts on community structure, as their proportion (p:a) changed from 10:1 in bare sand to nearly co-dominance in coral rubble. While previous research suggested that spreading sun corals reduce prey supply for fish foraging on reef walls, our results suggest they may increase prey abundance and diversity at the adjacent non-consolidated habitat, possibly reshaping trophic pathways connecting the benthic and the pelagic environment.


Assuntos
Antozoários , Alga Marinha , Animais , Recifes de Corais , Ecossistema , Peixes , Areia
5.
PeerJ ; 10: e14347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36540794

RESUMO

Soft corals (Anthozoa: Octocorallia) are discreet components in the Southwestern Atlantic reef communities. In Brazil, the native octocoral shallow-reef fauna is mostly represented by gorgonians. Consequently, except for the nephtheid Neospongodes atlantica, most of the known soft corals from this region are considered non-indigenous. Hitherto, the monotypic genus Neospongodes, which was proposed in the early 1900s, has been considered to be endemic to the Northeastern Brazilian coast. Herein, based on in situ records, we show that N. atlantica is a substrate generalist that has been probably expanding its distribution by dominating extensive shallow and mesophotic sandy and reef bottoms, generally outcompeting other reef benthic organisms, including Brazilian endemic species. Based on previously unidentified museum specimens, new records, and a broad literature review, we provide the most comprehensive modelling of the potential distribution of this species in the Southwestern Atlantic. Based on molecular inference supported by in-depth morphological analysis, the probable non-indigenous and, therefore, ancient introduction of N. atlantica in Brazilian waters is discussed. Finally, these results support that Neospongodes and the Indo-Pacific Stereonephthya are synonyms, which led us to propose the latter as taxonomically invalid.


Assuntos
Antozoários , Animais , Brasil , Museus
7.
Biomed Res Int ; 2022: 8170252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620224

RESUMO

Macrorhynchia philippina is a colonial benthic hydroid from the Class Hydrozoa (Phylum Cnidaria) distributed in the tropical and subtropical marine waters from Atlantic Ocean, Indo-Pacific, and Mozambique. Its colonies somewhat resemble plants, causing confusion in the bathers who accidentally touch the animal. Acute burning/local pain, edema, erythema, and pruritus were symptoms already described, but its venom composition is unknown, as well as the participation of toxins for the symptom's development. Thus, herein, we show the biochemical composition and toxic effects of M. philippina venom. Colonies were collected and processed for histological analysis; alternatively, they were immersed into methanol containing 0.1% acetic acid for venom attainment, which was analyzed by mass spectrometry and submitted to edema and nociception evaluation in mice, hemolysis and antimicrobial assays in vitro. Before the molecule's extraction, it was possible to see the inoculation structures (hydrocladiums and hydrotheca) containing venom, which was released after the immersion of the animal in the solvents. The venom was composed mainly by low molecular mass compounds, able to cause significant reduction of the paw withdrawal latency from the hot plate test, 30 minutes after the injection. Moreover, significant edema was observed 10 and 30 minutes after the injection, indicating the activity of at least two inflammatory mediators. The venom caused no hemolytic activity but reduced the growth of A. baumannii and K. pneumoniae strains. This study is the first biochemical description of M. philippina venom, with molecules that cause fast inflammatory and painful effects, characteristic of the envenomation.


Assuntos
Hidrozoários , Animais , Edema/induzido quimicamente , Mediadores da Inflamação , Camundongos , Personalidade , Peçonhas
8.
Mar Environ Res ; 174: 105563, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35078029

RESUMO

The susceptibility of a community to invasions is not the only factor influencing the success of the introduction of non-indigenous species (NIS). Because the conditions of the invaded environment tend to be unpredictable, plastic responses should increase the success of NIS in a new environment. Sun-corals are invaders in the Atlantic Ocean that present a range of strategies and plastic responses to deal with stress and distinct environmental conditions. We experimentally tested the plastic responses of sun-corals when exposed to different predation pressures and hydrodynamics in a recreational marina where sun-corals abundance varies spatially along with the environmental conditions. We separated young sun-coral colonies in two experiments: one controlling the presence of predators and the other manipulating water motion. While predation had no effect, revealing that even small young colonies are somehow protected against predators, corals increased colony area under reduced water motion but grew more polyps under greater water motion. These results highlight that plasticity in modular growth may be important for sun-corals to successfully invade distinct regions despite the hydrodynamic conditions. Increasing the colony area implicate in monopolization of space in calmer waters whilst growing more polyps allows it to have more mouths for feeding in turbulent food-poor waters. This response is particularly interesting as it is similar to the response of another NIS in the same site-the bryozoan Schizoporella errata. Phenotypic plasticity of reproductive strategies, including asexual propagation as observed here, appears to be relevant for modular NIS by facilitating the success on the invasion process in variable habitats.


Assuntos
Antozoários , Briozoários , Animais , Oceano Atlântico , Recifes de Corais , Ecossistema , Hidrodinâmica
10.
Biota Neotrop. (Online, Ed. ingl.) ; 22(spe): e20221385, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1403637

RESUMO

Abstract In this study we survey and analyze 300 projects related to marine biodiversity funded by FAPESP from 1972 to 2021, of which 46 were nested in the BIOTA Program. From a unique project in the 1970's, the number gradually increased until 2009, when BIOTA promoted a call on marine biodiversity, which led to a boost in the number of funded projects in the subsequent years. The geographical range of the projects expanded over the years and, from studies based on the coast of São Paulo State, the focus gradually shifted to broader areas of the Brazilian coast, then to other areas of the Atlantic, and eventually became global. The majority of projects focused on coastal benthic organisms living on hard-bottom. In terms of taxa, six groups accounted for about 60% of the projects (viz. Crustacea, Actinopterygii, Mollusca, Chondrichthyes, Cnidaria, and Rhodophyta), but it is observed an increase in the number of groups studied over the decades. The 300 projects refer to a set of 82 different topics, of which the top five are taxonomy, phylogeny, community, "omics", and pollution. The analyses show a long-standing effort in marine biodiversity surveys, with ongoing updated approaches regarding scope and methods. Research on strategic areas is discussed, including deep-sea and marine microbiota. Climate change and the increasing pressure of human activity on the ocean, including pollution, acidification and invasive species, are among the main challenges for the future. Projects producing and using basic research data in an integrative and transdisciplinary way offer multiple perspectives in understanding changes in ecosystem functioning and, consequently, are essential to support public policies for the conservation and sustainable use of marine biodiversity at different scales. UNESCO's Decade of Ocean (starting 2021) is a window of opportunity to strengthen marine research, to promote national and international collaboration, to build up networks involving the public and private sector, but particularly to draw society's attention to the importance of knowing marine environments and using ocean resources in a sustainable way. The advancement of ocean literacy is one of the main legacies for future generations promoted by integrated research programs such as BIOTA-FAPESP.


Resumo Neste estudo levantamos e analisamos 300 projetos relacionados à biodiversidade marinha financiados pela FAPESP entre 1972 a 2021, dos quais 46 foram realizados no Programa BIOTA. De um projeto único na década de 1970, o número foi aumentando gradativamente até 2009, quando o BIOTA promoveu uma chamada sobre biodiversidade marinha, o que impulsionou o número de projetos financiados nos anos seguintes. A abrangência geográfica dos projetos se expandiu ao longo dos anos e, a partir de estudos baseados no litoral do Estado de São Paulo, o foco gradualmente se deslocou para áreas mais amplas da costa brasileira, depois para outras áreas do Atlântico, e acabou se tornando global. A maioria dos projetos se concentrou em organismos costeiros, bentônicos, em substrato consolidado. Em termos de táxons, seis grupos responderam por cerca de 60% dos projetos (Crustacea, Actinopterygii, Mollusca, Chondrichthyes, Cnidaria e Rhodophyta), mas observa-se um aumento no número de grupos estudados ao longo das décadas. Os 300 projetos referem-se a um conjunto de 82 temas diferentes, dos quais os cinco principais são taxonomia, filogenia, comunidade, "ômicas" e poluição. As análises mostram um esforço de longa data em pesquisas de biodiversidade marinha, com abordagens atualizadas em relação ao escopo e métodos. A pesquisa em áreas estratégicas é discutida, incluindo os estudos sobre a microbiota marinha e em águas profundas. As mudanças climáticas e a crescente pressão da atividade humana sobre o oceano, incluindo poluição, acidificação e espécies invasoras, estão entre os principais desafios para o futuro. Projetos de produção e uso de dados de pesquisa básica de forma integrada e transdisciplinar oferecem múltiplas perspectivas de compreensão das mudanças no funcionamento dos ecossistemas e, consequentemente, são essenciais para subsidiar políticas públicas de conservação e uso sustentável da biodiversidade marinha em diferentes escalas. A Década do Oceano da UNESCO (a partir de 2021) é uma janela de oportunidade para fortalecer a pesquisa marinha, promover a colaboração nacional e internacional, construir redes envolvendo os setores público e privado, mas principalmente para chamar a atenção da sociedade para a importância de conhecer os ambientes marinhos e utilizar os recursos oceânicos de forma sustentável. O avanço da "alfabetização" oceânica é um dos principais legados para as gerações futuras promovidos por programas integrados de pesquisa como o BIOTA-FAPESP.

11.
Biomed Res Int, v. 2022, 8170252, mai. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4368

RESUMO

Macrorhynchia philippina is a colonial benthic hydroid from the Class Hydrozoa (Phylum Cnidaria) distributed in the tropical and subtropical marine waters from Atlantic Ocean, Indo-Pacific, and Mozambique. Its colonies somewhat resemble plants, causing confusion in the bathers who accidentally touch the animal. Acute burning/local pain, edema, erythema, and pruritus were symptoms already described, but its venom composition is unknown, as well as the participation of toxins for the symptom’s development. Thus, herein, we show the biochemical composition and toxic effects of M. philippina venom. Colonies were collected and processed for histological analysis; alternatively, they were immersed into methanol containing 0.1% acetic acid for venom attainment, which was analyzed by mass spectrometry and submitted to edema and nociception evaluation in mice, hemolysis and antimicrobial assays in vitro. Before the molecule’s extraction, it was possible to see the inoculation structures (hydrocladiums and hydrotheca) containing venom, which was released after the immersion of the animal in the solvents. The venom was composed mainly by low molecular mass compounds, able to cause significant reduction of the paw withdrawal latency from the hot plate test, 30 minutes after the injection. Moreover, significant edema was observed 10 and 30 minutes after the injection, indicating the activity of at least two inflammatory mediators. The venom caused no hemolytic activity but reduced the growth of A. baumannii and K. pneumoniae strains. This study is the first biochemical description of M. philippina venom, with molecules that cause fast inflammatory and painful effects, characteristic of the envenomation.

12.
Syst Biol ; 70(4): 635-647, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33507310

RESUMO

Anthozoan cnidarians (corals and sea anemones) include some of the world's most important foundation species, capable of building massive reef complexes that support entire ecosystems. Although previous molecular phylogenetic analyses have revealed widespread homoplasy of the morphological characters traditionally used to define orders and families of anthozoans, analyses using mitochondrial genes or rDNA have failed to resolve many key nodes in the phylogeny. With a fully resolved, time-calibrated phylogeny for 234 species constructed from hundreds of ultraconserved elements and exon loci, we explore the evolutionary origins of the major clades of Anthozoa and some of their salient morphological features. The phylogeny supports reciprocally monophyletic Hexacorallia and Octocorallia, with Ceriantharia as the earliest diverging hexacorals; two reciprocally monophyletic clades of Octocorallia; and monophyly of all hexacoral orders with the exception of the enigmatic sea anemone Relicanthus daphneae. Divergence dating analyses place Anthozoa in the Cryogenian to Tonian periods (648-894 Ma), older than has been suggested by previous studies. Ancestral state reconstructions indicate that the ancestral anthozoan was a solitary polyp that had bilateral symmetry and lacked a skeleton. Colonial growth forms and the ability to precipitate calcium carbonate evolved in the Ediacaran (578 Ma) and Cambrian (503 Ma) respectively; these hallmarks of reef-building species have subsequently arisen multiple times independently in different orders. Anthozoans formed associations with photosymbionts by the Devonian (383 Ma), and photosymbioses have been gained and lost repeatedly in all orders. Together, these results have profound implications for the interpretation of the Precambrian environment and the early evolution of metazoans.[Bilateral symmetry; coloniality; coral; early metazoans; exon capture; Hexacorallia; Octocorallia photosymbiosis; sea anemone; ultraconserved elements.].


Assuntos
Antozoários , Anêmonas-do-Mar , Animais , Antozoários/genética , Ecossistema , Genes Mitocondriais , Filogenia , Anêmonas-do-Mar/genética
13.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33323482

RESUMO

One of the most conserved traits in the evolution of biomineralizing organisms is the taxon-specific selection of skeletal minerals. All modern scleractinian corals are thought to produce skeletons exclusively of the calcium-carbonate polymorph aragonite. Despite strong fluctuations in ocean chemistry (notably the Mg/Ca ratio), this feature is believed to be conserved throughout the coral fossil record, spanning more than 240 million years. Only one example, the Cretaceous scleractinian coral Coelosmilia (ca. 70 to 65 Ma), is thought to have produced a calcitic skeleton. Here, we report that the modern asymbiotic scleractinian coral Paraconotrochus antarcticus living in the Southern Ocean forms a two-component carbonate skeleton, with an inner structure made of high-Mg calcite and an outer structure composed of aragonite. P. antarcticus and Cretaceous Coelosmilia skeletons share a unique microstructure indicating a close phylogenetic relationship, consistent with the early divergence of P. antarcticus within the Vacatina (i.e., Robusta) clade, estimated to have occurred in the Mesozoic (ca. 116 Mya). Scleractinian corals thus join the group of marine organisms capable of forming bimineralic structures, which requires a highly controlled biomineralization mechanism; this capability dates back at least 100 My. Due to its relatively prolonged isolation, the Southern Ocean stands out as a repository for extant marine organisms with ancient traits.


Assuntos
Exoesqueleto/metabolismo , Antozoários/metabolismo , Calcificação Fisiológica/genética , Carbonato de Cálcio/metabolismo , Exoesqueleto/anatomia & histologia , Exoesqueleto/química , Animais , Antozoários/anatomia & histologia , Antozoários/classificação , Antozoários/genética , Evolução Biológica , Carbonato de Cálcio/química , Fósseis , Filogenia
14.
Zookeys ; 1066: 1-198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36479134

RESUMO

Globally, South Africa ranks in the top five countries regarding marine species richness per unit area. Given the high diversity, it is not surprising that many invertebrate taxa in the region are poorly characterised. The South African azooxanthellate Scleractinia (Anthozoa) is one such taxonomic group, and was last reviewed by Boshoff in 1980. Although more recent regional publications have reported on some species, there has not been a faunistic review that accounts for the country's species diversity since then. Moreover, numerous unidentified specimens representing more than three decades of sampling effort have accumulated. In this study the authors update the state of knowledge of South African azooxanthellate coral species. Specimens, particularly those within the extensive collections of the Iziko South African and Smithsonian museums, were morphologically examined and identified. Other data considered included historic data represented as imagery data, associated species data from recent research surveys, and the scientific literature. To date, the study has increased the total number of known species from 77 to 108 across eleven families, 28 new South African records, and three are new species with one new genus.

15.
Sci Rep ; 10(1): 20714, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244171

RESUMO

Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging "Basal" lineage remains poorly studied compared to "Robust" and "Complex" corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confirm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as well as its microstructural differences with Gardineriidae. The fact that both families share features with family Kilbuchophylliidae ultimately points towards a Middle Ordovician origin for Scleractinia.


Assuntos
Antozoários/genética , Genoma Mitocondrial/genética , Animais , Evolução Biológica , Recifes de Corais , Genes Mitocondriais/genética , Filogenia
16.
Nat Ecol Evol ; 4(11): 1531-1538, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32868916

RESUMO

Identifying how past environmental conditions shaped the evolution of corals and their skeletal traits provides a framework for predicting their persistence and that of their non-calcifying relatives under impending global warming and ocean acidification. Here we show that ocean geochemistry, particularly aragonite-calcite seas, drives patterns of morphological evolution in anthozoans (corals, sea anemones) by examining skeletal traits in the context of a robust, time-calibrated phylogeny. The lability of skeletal composition among octocorals suggests a greater ability to adapt to changes in ocean chemistry compared with the homogeneity of the aragonitic skeleton of scleractinian corals. Pulses of diversification in anthozoans follow mass extinctions and reef crises, with sea anemones and proteinaceous corals filling empty niches as tropical reef builders went extinct. Changing environmental conditions will likely diminish aragonitic reef-building scleractinians, but the evolutionary history of the Anthozoa suggests other groups will persist and diversify in their wake.


Assuntos
Antozoários , Animais , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar , Esqueleto
17.
Ecol Evol ; 10(13): 6223-6238, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724509

RESUMO

The sun coral Tubastraea coccinea Lesson, 1829 (Dendrophylliidae) is a widely distributed shallow-water scleractinian that has extended its range to non-native habitats in recent decades. With its rapid spread, this coral is now one of the main invasive species in Brazil. Its high invasive capability is related to opportunistic characteristics, including several reproductive strategies that have allowed it to disperse rapidly and widely. To better understand the reproductive biology of T. coccinea and aid in developing management strategies for invaded areas, we investigated aspects of its reproductive performance and life cycle, including the effects of colony size, seawater temperature and salinity, and lunar periodicity on offspring production and larval metamorphosis competence. A total of 18,139 offspring were released in different developmental stages, mainly from the larger colonies, which also produced larvae with longer competence periods. The main reproductive peak occurred during the First Quarter and New Moon phases and was highest in water temperatures around 26°C. Together, these results help to explain the rapid expansion of T. coccinea into non-native habitats such as the Caribbean and southwestern Atlantic, and will inform actions of the recent Brazilian National Plan for the prevention, eradication, control, and monitoring of sun corals.

18.
PeerJ ; 8: e8633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211227

RESUMO

Atlantia is described as a new genus pertaining to the family Dendrophylliidae (Anthozoa, Scleractinia) based on specimens from Cape Verde, eastern Atlantic. This taxon was first recognized as Enallopsammia micranthus and later described as a new species, Tubastraea caboverdiana, which then changed the status of the genus Tubastraea as native to the Atlantic Ocean. Here, based on morphological and molecular analyses, we compare fresh material of T. caboverdiana to other dendrophylliid genera and describe it as a new genus named Atlantia in order to better accommodate this species. Evolutionary reconstruction based on two mitochondrial and one nuclear marker for 67 dendrophylliids and one poritid species recovered A. caboverdiana as an isolated clade not related to Tubastraea and more closely related to Dendrophyllia cornigera and Leptopsammia pruvoti. Atlantia differs from Tubastraea by having a phaceloid to dendroid growth form with new corallites budding at an acute angle from the theca of a parent corallite. The genus also has normally arranged septa (not Portualès Plan), poorly developed columella, and a shallow-water distribution all supporting the classification as a new genus. Our results corroborate the monophyly of the genus Tubastraea and reiterate the Atlantic non-indigenous status for the genus. In the light of the results presented herein, we recommend an extensive review of shallow-water dendrophylliids from the Eastern Atlantic.

19.
Ecol Evol ; 10(4): 1794-1803, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128117

RESUMO

Tubastraea coccinea is an azooxanthellate coral species recorded in the Indian and Atlantic oceans and is presently widespread in the southwestern Atlantic with an alien status for Brazil. T. coccinea outcompete other native coral species by using a varied repertoire of biological traits. For example, T. coccinea has evolved potent venom capable of immobilizing and digesting zooplankton prey. Diversification and modification of venom toxins can provide potential adaptive benefits to individual fitness, yet acquired alteration of venom composition in cnidarians is poorly understood as the adaptive flexibility affecting toxin composition in these ancient lineages has been largely ignored. We used quantitative high-throughput proteomics to detect changes in toxin expression in clonal fragments of specimens collected and interchanged from two environmentally distinct and geographically separate study sites. Unexpectedly, despite global changes in protein expression, there were no changes in the composition and abundance of toxins from coral fragments recovered from either site, and following clonal transplantation between sites. There were also no apparent changes to the cnidome (cnidae) and gross skeletal or soft tissue morphologies of the specimens. These results suggest that the conserved toxin complexity of T. coccinea co-evolved with innovation of the venom delivery system, and its morphological development and phenotypic expression are not modulated by habitat pressures over short periods of time. The adaptive response of the venom trait to specific predatory regimes, however, necessitates further consideration.

20.
PeerJ ; 5: e3873, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018611

RESUMO

Although the invasive azooxanthellate corals Tubastraea coccinea and T. tagusensis are spreading quickly and outcompeting native species in the Atlantic Ocean, there is little information regarding the genetic structure and path of introduction for these species. Here we present the first data on genetic diversity and clonal structure from these two species using a new set of microsatellite markers. High proportions of clones were observed, indicating that asexual reproduction has a major role in the local population dynamics and, therefore, represents one of the main reasons for the invasion success. Although no significant population structure was found, results suggest the occurrence of multiple invasions for T. coccinea and also that both species are being transported along the coast by vectors such as oil platforms and monobouys, spreading these invasive species. In addition to the description of novel microsatellite markers, this study sheds new light into the invasive process of Tubastraea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...